Multifunctional Nanocrystalline-Assembled Porous Hierarchical Material and Device for Integrating Microwave Absorption, Electromagnetic Interference Shielding, and Energy Storage
Lihua Yao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
School of Mechatronical Engineering, Shanxi Datong University, Datong, 037003 China
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, 037009 China
Search for more papers by this authorYuchang Wang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Jianguo Zhao
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, 037009 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Youqi Zhu
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maosheng Cao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLihua Yao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
School of Mechatronical Engineering, Shanxi Datong University, Datong, 037003 China
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, 037009 China
Search for more papers by this authorYuchang Wang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Jianguo Zhao
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, 037009 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Youqi Zhu
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maosheng Cao
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Multifunctional applications including efficient microwave absorption and electromagnetic interference (EMI) shielding as well as excellent Li-ion storage are rarely achieved in a single material. Herein, a multifunctional nanocrystalline-assembled porous hierarchical NiO@NiFe2O4/reduced graphene oxide (rGO) heterostructure integrating microwave absorption, EMI shielding, and Li-ion storage functions is fabricated and tailored to develop high-performance energy conversion and storage devices. Owing to its structural and compositional advantages, the optimized NiO@NiFe2O4/15rGO achieves a minimum reflection loss of −55 dB with a matching thickness of 2.3 mm, and the effective absorption bandwidth is up to 6.4 GHz. The EMI shielding effectiveness reaches 8.69 dB. NiO@NiFe2O4/15rGO exhibits a high initial discharge specific capacity of 1813.92 mAh g−1, which reaches 1218.6 mAh g−1 after 289 cycles and remains at 784.32 mAh g−1 after 500 cycles at 0.1 A g−1. In addition, NiO@NiFe2O4/15rGO demonstrates a long cycling stability at high current densities. This study provides an insight into the design of advanced multifunctional materials and devices and provides an innovative method of solving current environmental and energy problems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202208101-sup-0001-SuppMat.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Guan, X. M. Liu, W. N. Ren, X. Li, C. W. Cheng, J. Wang, Adv. Energy Mater. 2017, 7, 1602391.
- 2L. H. Yao, W. Q. Cao, J. C. Shu, M. S. Cao, X. D. Sun, Chem. Eng. J. 2021, 413, 127428.
- 3X. H. Liang, Z. M. Man, B. Quan, J. Zheng, W. H. Gu, Z. Zhang, G. B. Ji, Nano-Micro Lett. 2020, 12, 102.
- 4L. H. Yao, W. Q. Cao, J. G. Zhao, Q. Zheng, Y. C. Wang, S. Jiang, Q. L. Pan, J. Song, Y. Q. Zhu, M. S. Cao, J. Mater. Sci. Technol. 2022, 127, 48.
- 5L. Wang, X. F. Yu, X. Li, J. Zhang, M. Wang, R. C. Che, Chem. Eng. J. 2020, 383, 123099.
- 6Y. Cheng, J. Z. Y. Seow, H. Q. Zhao, Z. C. J. Xu, G. B. Ji, Nano‑Micro Lett. 2020, 12, 125.
- 7M. S. Cao, X. X. Wang, M. Zhang, J. C. Shu, W. Q. Cao, H. J. Yang, X. Y. Fang, J. Yuan, Adv. Funct. Mater. 2019, 29, 1807398.
- 8C. Han, M. Zhang, W. Q. Cao, M. S. Cao, Carbon 2021, 171, 953.
- 9H. Li, A. D. Wang, T. Liu, P. B. Chen, A. N. He, Q. Li, J. H. Luan, C. T. Liu, Mater. Today 2021, 42, 49.
- 10Z. P. Chen, C. Xu, C. Q. Ma, W. C. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296.
- 11H. L. Lv, Z. H. Yang, S. J. H. Ong, C. Wei, H. B. Liao, S. B. Xi, Y. H. Du, G. B. Ji, Z. C. J. Xu, Adv. Funct. Mater. 2019, 29, 1900163.
- 12W. C. Jiang, F. Wu, Y. J. Jiang, M. X. Sun, K. Zhang, Y. L. Xia, D. R. Wang, A. M. Xie, Nanoscale 2017, 9, 10961.
- 13Y. Li, X. Tian, S. P. Gao, L. Jing, K. R. Li, H. T. Yang, F. F. Fu, J. Y. Lee, Y. X. Guo, J. S. Ho, Adv. Funct. Mater. 2020, 30, 1907451.
- 14M. S. Cao, X. X. Wang, W. Q. Cao, X. Y. Fang, B. Wen, J. Yuan, Small 2018, 14, 1800987.
- 15J. C. Shu, X. Y. Huang, M. S. Cao, Carbon 2021, 174, 638.
- 16J. C. Shu, M. S. Cao, M. Zhang, X. X. Wang, W. Q. Cao, X. Y. Fang, M. Q. Cao, Adv. Funct. Mater. 2020, 30, 1908299.
- 17Y. D. Zhu, Y. Huang, M. Y. Wang, Chem. Eng. J. 2019, 378, 122207.
- 18H. Wu, N. Du, J. Z. Wang, H. Zhang, D. R. Yang, J. Power Sources 2014, 246, 198.
- 19L. H. Yao, J. G. Zhao, J. W. Li, Int. J. Quantum Chem. 2021, 121, e26660.
- 20Y. H. Cui, F. Wu, J. Q. Wang, Y. B. Wang, T. Shah, P. Liu, Q. Y. Zhang, B. L. Zhang, Composites, Part A 2021, 145, 106378.
- 21B. R. Wang, J. Jin, K. Rui, C. X. Zhu, Z. Y. Wen, J. Power Sources 2018, 396, 124.
- 22Y. L. Zhang, X. X. Wang, M. S. Cao, Nano Res. 2018, 11, 1426.
- 23I. Abdalla, J. Y. Yu, Z. L. Li, B. Ding, Composites, Part B 2018, 155, 397.
- 24J. C. Shu, M. S. Cao, Y. L. Zhang, Y. Z. Wang, Q. L. Zhao, X. Y. Fang, S. H. Yang, Y. Qin, J. Yuan, Adv. Funct. Mater. 2023, https://doi.org/10.1002/adfm.202212379.
- 25Y. Ding, Y. F. Yang, H. X. Shao, J. Power Sources 2013, 244, 610.
- 26Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Energy Storage Mater. 2016, 2, 35.
- 27Z. H. Yang, H. L. Lv, R. B. Wu, Nano Res. 2016, 9, 3671.
- 28H. Yu, H. Fan, B. Yadian, H. Tan, W. Liu, H. H. Hng, Y. Huang, Q. Yan, ACS Appl. Mater. Interfaces 2015, 7, 26751.
- 29M. Fu, Q. Z. Jiao, Y. Zhao, J. Mater. Chem. A 2013, 1, 5577.
- 30B. B. Wang, G. Wang, X. M. Cheng, H. Wang, Chem. Eng. J. 2016, 306, 1193.
- 31L. H. Yao, J. G. Zhao, Q. L. Pan, X. Y. Li, B. Y. Xing, S. Jiang, J. Song, M. J. Pang, J. Alloys Compd. 2022, 912, 165209.
- 32J. G. Wang, D. D. Jin, R. Zhou, X. Li, X. R. Liu, C. Shen, K. Y. Xie, B. H. Li, J. G. Wang, D. D. Jin, F. Y. Kang, B. Q. Wei, ACS Nano 2016, 10, 6227.
- 33M. Kruk, M. Jaroniec, Chem. Mater. 2001, 13, 3169.
- 34W. X. Zhang, Y. Yu, R. T. Huang, X. Y. Shi, ACS Appl. Mater. Interfaces 2021, 13, 40571.
- 35H. L. Shen, X. F. Xia, S. Yan, X. Y. Jiao, D. P. Sun, W. Lei, Q. L. Hao, J. Alloys Compd. 2021, 853, 157017.
- 36C. Z. Yuan, H. Cao, S. Q. Zhu, H. Hua, L. R. Hou, J. Mater. Chem. A 2015, 3, 20389.
- 37Z. F. Wang, X. M. Zhang, X. L. Liu, W. Q. Zhang, Y. G. Zhang, Y. Y. Li, C. L. Qin, W. M. Zhao, Z. Bakenov, Chem. Eng. J. 2020, 388, 124207.
- 38B. Wen, M. S. Cao, M. M. Lu, W. Q. Cao, H. L. Shi, J. Liu, X. X. Wang, H. B. Jin, X. Y. Fang, W. Z. Wang, J. Yuan, Adv. Mater. 2014, 26, 3484.
- 39M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, J. Yuan, Carbon 2010, 48, 788.
- 40Y. C. Wang, L. H. Yao, Q. Zheng, M. S. Cao, Nano Res. 2022, 15, 6751.
- 41Z. C. Wu, K. Pei, L. S. Xing, X. F. Yu, W. B. You, R. C. Che, Adv. Funct. Mater. 2019, 29, 1901448.
- 42Q. Liu, Q. I. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 2016, 28, 486.
- 43H. Lv, H. Zhang, J. Zhao, G. Ji, Y. Du, Nano Res. 2016, 9, 1813.
- 44X. F. Zhang, Y. Rao, J. J. Guo, G. W. Qin, Carbon 2016, 96, 972.
- 45G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, Y. Qin, Nano Res. 2014, 7, 704.
- 46Q. Q. Wang, B. Niu, Y. H. Han, Q. Zheng, L. Li, M. S. Cao, Chem. Eng. J. 2023, 452, 139042.
- 47M. Zhang, C. Han, W. Q. Cao, M. S. Cao, H. J. Yang, J. Yuan, Nano‑Micro Lett. 2021, 13, 27.
- 48L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, J. Mater. Chem. A 2013, 1, 1141.
- 49G. Huang, F. F. Zhang, L. L. Zhang, X. C. Du, J. W. Wang, L. M. Wang, J. Mater. Chem. A 2014, 2, 8048.
- 50J. X. Zhu, D. Yang, X. H. Rui, D. H. Sim, H. Yu, H. E. Hoster, P. M. Ajayan, Q. Y. Yan, Small 2013, 9, 3390.
- 51Y. X. Zhang, Y. Q. Zhu, Z. T. Wang, H. Peng, X. Y. Yang, Y. H. Cao, C. L. Du, X. L. Ma, C. B. Cao, Adv. Funct. Mater. 2021, 31, 2104730.
- 52Z. Xing, Z. C. Ju, J. Yang, H. Y. Xu, Y. Qian, Nano Res. 2012, 5, 477.
- 53W. Q. Cao, W. Z. Wang, H. L. Shi, J. Wang, M. S. Cao, Y. J. Liang, M. Zhu, Nano Res. 2018, 11, 1437.
- 54Y. Huang, Z. Xu, J. Mai, T. K. Lau, X. Lu, Y. J. Hsu, Y. Chen, A. C. Lee, Y. Hou, Y. S. Meng, Q. Li, Nano Energy 2017, 41, 426.
- 55Y. Ma, J. P. Hu, Z. T. Wang, Y. Q. Zhu, X. L. Ma, C. B. Cao, J. Power Sources 2020, 451, 227759.
- 56H. Geng, D. Ge, S. Lu, J. Wang, Z. Ye, Y. Yang, J. Zheng, H. Gu, Chem. - Eur. J. 2015, 21, 11129.
- 57J. Wang, W. Li, F. Wang, Y. Xia, A. M. Asiri, D. Zhao, Nanoscale 2014, 6, 3217.
- 58J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 59J. Y. Park, S. J. Kim, K. Yim, K. S. Dae, Y. Lee, K. P. Dao, J. S. Park, H. Jeong, J. H. Chang, H. K. Seo, C. W. Ahn, J. M. Yuk, Adv. Sci. 2019, 6, 1900264.
10.1002/advs.201900264 Google Scholar
- 60L. Q. Wang, Q. Q. Zhao, Z. T. Wang, Y. J. Wu, X. L. Ma, Y. Q. Zhu, C. B. Cao, Nanoscale 2020, 12, 248.
- 61C. Han, W. Q. Cao, M. S. Cao, Inorg. Chem. Front. 2020, 7, 4101.