Scalable Manufacturing of Environmentally Stable All-Solid-State Plant Protein-Based Supercapacitors with Optimal Balance of Capacitive Performance and Mechanically Robust
Shuaicheng Jiang
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorYanqiang Wei
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorXiaona Li
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorSheldon Q. Shi
Department of Mechanical Engineering, University of North Texas, Denton, TX, 76203 USA
Search for more papers by this authorCorresponding Author
Dan Tian
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhen Fang
Shandong Laboratory of Yantai Advanced Material and Green Manufacture, No. 300 Changjiang Road, Yantai, 264006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianzhang Li
MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShuaicheng Jiang
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorYanqiang Wei
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorXiaona Li
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
Search for more papers by this authorSheldon Q. Shi
Department of Mechanical Engineering, University of North Texas, Denton, TX, 76203 USA
Search for more papers by this authorCorresponding Author
Dan Tian
College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhen Fang
Shandong Laboratory of Yantai Advanced Material and Green Manufacture, No. 300 Changjiang Road, Yantai, 264006 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianzhang Li
MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The development of advanced biomaterial with mechanically robust and high energy density is critical for flexible electronics, such as batteries and supercapacitors. Plant proteins are ideal candidates for making flexible electronics due to their renewable and eco-friendly natures. However, due to the weak intermolecular interactions and abundant hydrophilic groups of protein chains, the mechanical properties of protein-based materials, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, a green and scalable method is shown for the fabrication of advanced film biomaterials with high mechanical strength (36.3 MPa), toughness (21.25 MJ m−3), and extraordinary fatigue-resistance (213 000 times) by incorporating tailor-made core–double-shell structured nanoparticles. Subsequently, the film biomaterials combine to construct an ordered, dense bulk material by stacking-up and hot-pressing techniques. Surprisingly, the solid-state supercapacitor based on compacted bulk material shows an ultrahigh energy density of 25.8 Wh kg−1, which is much higher than those previously reported advanced materials. Notably, the bulk material also demonstrates long-term cycling stability, which can be maintained under ambient condition or immersed in H2SO4 electrolyte for more than 120 days. Thus, this research improves the competitiveness of protein-based materials for real-world applications such as flexible electronics and solid-state supercapacitors.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202207997-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, K. L. Law, Science 2015, 347, 768.
- 2L. C. M. Lebreton, J. Van der Zwet, J.-W. Damsteeg, B. Slat, A. Andrady, J. Reisser, Nat. Commun. 2017, 8, 15611.
- 3D. G. Mackanic, T. H. Chang, Z. J. Huang, Y. Cui, Z. N. Bao, Chem. Soc. Rev. 2020, 49, 4466.
- 4D. Gan, Z. Huang, X. Wang, L. Jiang, C. Wang, M. Zhu, F. Ren, L. Fang, K. Wang, C. Xie, X. Lu, Adv. Funct. Mater. 2020, 30, 1907678.
- 5Y. Wang, S. Xia, H. Li, J. Wang, Adv. Funct. Mater. 2019, 29, 1903876.
- 6X. Ji, Q. Wang, M. Yu, M. K. Hadi, Y. Liu, L. Zhao, F. Ran, Energy Storage Mater. 2021, 37, 587.
- 7W. Ge, S. Cao, Y. Yang, O. J. Rojas, X. Wang, Chem. Eng. J. 2021, 408, 127306.
- 8J. Liu, S. Lin, X. Liu, Z. Qin, Y. Yang, J. Zang, X. Zhao, Nat. Commun. 2020, 11, 1071.
- 9F. B. Kadumudi, M. Jahanshahi, M. Mehrali, T.-G. Zsurzsan, N. Taebnia, M. Hasany, S. Mohanty, A. Knott, B. Godau, M. Akbari, A. Dolatshahi-Pirouz, Adv. Sci. 2019, 6, 1801241.
- 10J. Fan, J. Huang, Z. Gong, L. Cao, Y. Chen, ACS Appl. Mater. Interfaces 2021, 13, 1135.
- 11Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao, H. Li, J. Hu, R. Zeng, J. He, Q. Wang, Adv. Mater. 2018, 30, 1805672.
- 12K. M. Wyss, D. X. Luong, J. M. Tour, Adv. Mater. 2022, 34, 2106970.
- 13L. Liao, D. Jiang, K. Zheng, M. Zhang, J. Liu, Adv. Funct. Mater. 2021, 31, 2103960.
- 14C. Wang, M. Zhu, H.-Y. Yu, S. Y. H. Abdalkarim, Z. Ouyang, J. Zhu, J. Yao, ACS Appl. Mater. Interfaces 2021, 13, 33371.
- 15W. Li, Q. Liu, Y. Zhang, C. A. Li, Z. He, W. C. H. Choy, P. J. Low, P. Sonar, A. K. K. Kyaw, Adv. Mater. 2020, 32, 2001591.
- 16A. Kamada, M. Rodriguez-Garcia, F. S. Ruggeri, Y. Shen, A. Levin, T. P. J. Knowles, Nat. Commun. 2021, 12, 3529.
- 17X. Ye, K. Junel, M. Gallstedt, M. Langton, X.-F. Wei, C. Lendel, M. S. Hedenqvist, ACS Sustainable Chem. Eng. 2018, 6, 5462.
- 18A. R. Patel, Adv. Funct. Mater. 2020, 30, 1806809.
- 19M. A. Nosenko, A. M. Moysenovich, A. Y. Arkhipova, K.-S. N. Atretkhany, S. A. Nedospasov, M. S. Drutskaya, M. M. Moisenovich, Bioact. Mater. 2021, 6, 3449.
- 20M. M. Chen, F. C. Yang, X. Chen, R. R. Qin, H. M. Pi, G. J. Zhou, P. Yang, Adv. Mater. 2021, 33, 2104187.
- 21P. Chakraborty, Y. Tang, T. Yamamoto, Y. Yao, T. Guterman, S. Zilberzwige-Tal, N. Adadi, W. Ji, T. Dvir, A. Ramamoorthy, G. Wei, E. Gazit, Adv. Mater. 2020, 32, 1906043.
- 22C. Guo, C. Li, H. V. Vu, P. Hanna, A. Lechtig, Y. Qiu, X. Mu, S. Ling, A. Nazarian, S. J. Lin, D. L. Kaplan, Nat. Mater. 2020, 19, 102.
- 23S. Jiang, Y. Wei, S. Q. Shi, Y. Dong, C. Xia, D. Tian, J. Luo, J. Li, Z. Fang, Nano Lett. 2021, 21, 3254.
- 24K. Li, S. Jin, X. Li, S. Q. Shi, J. Li, J. Cleaner Prod. 2021, 285, 125504.
- 25Y. H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng, V. W. Yang, H. Mi, M. Kim, S. J. Cho, D.-W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, Z. Ma, Nat. Commun. 2015, 6, 7170.
- 26H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao, C. Wang, C. Pan, C. Liu, C. Shen, Adv. Funct. Mater. 2021, 31, 2008006.
- 27S. D. Kim, A. Sarkar, J.-H. Ahn, Small 2021, 17, 2006262.
- 28H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C. R. Bowen, C. Wan, Chem. Soc. Rev. 2019, 48, 4424.
- 29Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo, Y. Fu, S. C. Tan, Adv. Funct. Mater. 2022, 32, 2206287.
- 30Q. Yuan, F.-Z. Yao, S.-D. Cheng, L. Wang, Y. Wang, S.-B. Mi, Q. Wang, X. Wang, H. Wang, Adv. Funct. Mater. 2020, 30, 2000191.
- 31J. Zheng, Z. Yu, Y. Wang, Y. Fu, D. Chen, H. Zhou, ACS Nano 2021, 15, 17499.
- 32Z.-M. Dang, Y.-Q. Lin, H.-P. Xu, C.-Y. Shi, S.-T. Li, J. Bai, Adv. Funct. Mater. 2008, 18, 1509.
- 33K. Yang, X. Huang, M. Zhu, L. Xie, T. Tanaka, P. Jiang, ACS Appl. Mater. Interfaces 2014, 6, 1812.
- 34C. Wang, G. He, S. Chen, D. Zhai, H. Luo, D. Zhang, J. Mater. Chem. A 2021, 9, 8674.
- 35K. Maity, U. Pal, H. K. Mishra, P. Maji, P. Sadhukhan, Z. Mallick, S. Das, B. Mondal, D. Mandal, Nano Energy 2022, 92, 106743.
- 36Y. Zhang, Z. Yang, Y. Yu, B. Wen, Y. Liu, M. Qiu, ACS Appl. Polym. Mater. 2019, 1, 737.
- 37Y. Wei, S. Jiang, X. Li, J. Li, Y. Dong, S. Q. Shi, J. Li, Z. Fang, ACS Appl. Mater. Interfaces 2021, 13, 37617.
- 38D. Yang, L. Yu, Y. Liang, Q. Wei, Y. Ni, L. Zhang, ACS Appl. Polym. Mater. 2020, 2, 5621.
- 39B. Jin, G. Zhang, J. Lian, Q. Zhang, X. Zhan, F. Chen, J. Mater. Chem. A 2019, 7, 12266.
- 40F. B. Kadumudi, M. Hasany, M. K. Pierchala, M. Jahanshahi, N. Taebnia, M. Mehrali, C. F. Mitu, M. A. Shahbazi, T. G. Zsurzsan, A. Knott, T. L. Andresen, A. Dolatshahi-Pirouz, Adv. Mater. 2021, 33, 2100047.
- 41S. Jiang, Y. Wei, L. Tao, S. Ge, S. Q. Shi, X. Li, J. Li, L. Quyet Van, C. Xia, Prog. Org. Coat. 2021, 158, 106390.
- 42V. Khandelwal, S. K. Sahoo, A. Kumar, S. K. Sethi, G. Manik, Composites, Part B 2019, 172, 76.
- 43Y. Li, Z. Xia, Q. Gong, X. Liu, Y. Yang, C. Chen, C. Qian, Nanomaterials 2020, 10, 1546.
- 44Y. Q. Wei, S. C. Jiang, J. J. Li, X. N. Li, K. Li, J. Z. Li, Z. Fang, J. Mater. Chem. A 2022, 10, 8491.
- 45J. Li, S. Jiang, Y. Wei, X. Li, S. Q. Shi, W. Zhang, J. Li, Composites, Part B 2021, 211, 108645.
- 46J. Li, S. Jiang, Y. Zhou, X. Li, S. Q. Shi, J. Li, Polym. Test. 2021, 97, 107162.
- 47X. Li, Y. Wei, S. Jiang, Y. Zhou, J. Li, K. Li, S. Q. Shi, J. Li, Macromol. Mater. Eng. 2021, 306, 2100004.
- 48Y. Wang, T. Li, P. Ma, S. Zhang, H. Zhang, M. Du, Y. Xie, M. Chen, W. Dong, W. Ming, ACS Nano 2018, 12, 6228.
- 49Y. Li, S. Li, J. Sun, Adv. Mater. 2021, 33, 2007371.
- 50T. Kaneko, T. H. Thi, D. J. Shi, M. Akashi, Nat. Mater. 2006, 5, 966.
- 51J. C. C. Yeo, J. K. Muiruri, J. J. Koh, W. Thitsartarn, X. Zhang, J. Kong, T. T. Lin, Z. Li, C. He, Adv. Funct. Mater. 2020, 30, 2001565.
- 52D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, A. Schroeder, Chem. Eng. J. 2018, 340, 9.
- 53A. Ragusa, A. Svelato, C. Santacroce, P. Catalano, V. Notarstefano, O. Carnevali, F. Papa, M. C. A. Rongioletti, F. Baiocco, S. Draghi, E. D'Amore, D. Rinaldo, M. Matta, E. Giorgini, Environ. Int. 2021, 146, 106274.
- 54J. X. Wang, L. Emmerich, J. F. Wu, P. Vana, K. Zhang, Nat. Sustain. 2021, 4, 877.
- 55C. Zhang, D. A. McAdamsII, J. C. Grunlan, Adv. Mater. 2016, 28, 6292.
- 56H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao, H. Coelfen, X.-S. Luo, F. Zhang, Z. Pan, Y.-F. Meng, Y. Ni, S.-H. Yu, Nat. Commun. 2017, 8, 287.
- 57J. T. Liu, V. M. Friebe, R. N. Frese, M. R. Jones, Nat. Commun. 2020, 11, 1542.
- 58S. K. Ravi, P. Rawding, A. M. Elshahawy, K. Huang, W. X. Sun, F. F. Zhao, J. Wang, M. R. Jones, S. C. Tan, Nat. Commun. 2019, 10, 902.
- 59D. Domene-Lopez, J. J. Delgado-Marin, J. C. Garcia-Quesada, I. Martin-Gullon, M. G. Montalban, Carbohydr. Polym. 2020, 229, 115545.
- 60H. Wang, Q. Wang, X. Cao, Y. He, K. Wu, J. Yang, H. Zhou, W. Liu, X. Sun, Adv. Mater. 2020, 32, 2001259.
- 61G. Tan, J. Zhang, L. Zheng, D. Jiao, Z. Liu, Z. Zhang, R. O. Ritchie, Adv. Mater. 2019, 31, 1904603.
- 62Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li, T. Zhai, ACS Nano 2020, 14, 2036.
- 63F. Bouville, E. Maire, S. Meille, B. Van de Moortele, A. J. Stevenson, S. Deville, Nat. Mater. 2014, 13, 508.
- 64M. Li, M. Wang, N. Zhao, H. Bai, ACS Nano 2022, 16, 14737.
- 65M. Grossman, F. Bouville, F. Erni, K. Masania, R. Libanori, A. R. Studart, Adv. Mater. 2017, 29, 1605039.
- 66P. Das, J.-M. Malho, K. Rahimi, F. H. Schacher, B. Wang, D. E. Demco, A. Walther, Nat. Commun. 2015, 6, 5967.
- 67L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Colfen, G. Liu, S.-M. Chen, S.-K. Li, Y.-X. Yan, Y.-Y. Liu, S.-H. Yu, Science 2016, 354, 107.
- 68M. A. Marwat, W. Ma, P. Fan, H. Elahi, C. Samart, B. Nan, H. Tan, D. Salamon, B. Ye, H. Zhang, Energy Storage Mater. 2020, 31, 492.
- 69J. Zeng, L. Dong, W. Sha, L. Wei, X. Guo, Chem. Eng. J. 2020, 383, 123098.
- 70X. Jin, L. Song, H. Yang, C. Dai, Y. Xiao, X. Zhang, Y. Han, C. Bai, B. Lu, Q. Liu, Y. Zhao, J. Zhang, Z. Zhang, L. Qu, Environ. Sci. 2021, 14, 3075.
- 71K. Qin, J. Baucom, L. Diao, Y. Lu, N. Zhao, Small 2022, 18, 2203166.
- 72S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, J. Mater. Chem. A 2017, 5, 17442.
- 73H. Jiang, Z. Wang, Q. Yang, M. Hanif, Z. Wang, L. Dong, M. Dong, Electrochim. Acta 2018, 290, 695.
- 74L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 2018, 3, 1597.
- 75W. Sun, Z. Xu, C. Qiao, B. Lv, L. Gai, X. Ji, H. Jiang, L. Liu, Adv. Sci. 2022, 9, 2201679.
- 76M. Wang, X. Xing, I. F. Perepichka, Y. Shi, D. Zhou, P. Wu, H. Meng, Adv. Eng. Mater. 2019, 9, 1900433.
- 77J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
- 78F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang, Q. Wang, Adv. Funct. Mater. 2017, 27, 1606292.
- 79P. Wang, L. Yao, Z. Pan, S. Shi, J. Yu, Y. Zhou, Y. Liu, J. Liu, Q. Chi, J. Zhai, Q. Wang, Adv. Mater. 2021, 33, 2103338.
- 80L. Li, J. Cheng, Y. Cheng, T. Han, Y. Liu, Y. Zhou, G. Zhao, Y. Zhao, C. Xiong, L. Dong, Q. Wang, Adv. Mater. 2021, 33, 2102392.