Improving Out-of-Plane Charge Mobility and Phase Stability of Dion-Jacobson Lead-Free Perovskites via Intercalating π-Conjugated Aromatic Spacers
Qian Sun
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Ming-Hui Shang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhi Fang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
School of Materials Science and Engineering, Peking University, Beijing, 100091 P. R. China
Search for more papers by this authorYapeng Zheng
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Xinmei Hou
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weiyou Yang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorQian Sun
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Ming-Hui Shang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhi Fang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
School of Materials Science and Engineering, Peking University, Beijing, 100091 P. R. China
Search for more papers by this authorYapeng Zheng
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Search for more papers by this authorCorresponding Author
Xinmei Hou
Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weiyou Yang
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The layered quasi-2D perovskites are recognized as one of the effective strategies to resolve the big problem of intrinsic phase instability of the perovskites. However, in such configurations, their performance is fundamentally limited due to the correspondingly weakened out-of-plane charge mobility. Herein, the π-conjugated p-phenylenediamine (PPDA) is introduced as organic ligand ions for rationally designing lead-free and tin-based 2D perovskites with the aid of theoretical computation. It is evidenced that both out-of-plane charge transport capacity and stability can be significantly enhanced within as-established quasi-2D Dion-Jacobson (DJ) (PPDA)Csn-1SnnI3n+1 perovskites. The obviously increased electrical conductivity and reduced carrier effective masses are attributed to the enhanced interlayer interactions, limited structural distortions of diamine cations, as well as improved orbital coupling between Sn2+ and I− ions of (PPDA)Csn-1SnnI3n+1 perovskites. Accordingly, by dimension engineering of the inorganic layer (n), the bandgap (Eg) of quasi-2D perovskites can be linearly tailored toward the suitable Eg (1.387 eV) with optimal photoelectric conversion efficiency (PCE) of 18.52%, representing their great potential toward promising applications in advanced solar cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202207755-sup-0001-SuppMat.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Y. Gu, N. Wang, A. Wu, Z. Wang, M. Tian, Z. Fu, X. W. Sun, Q. Zhang, Chem Asian J 2016, 11, 2135.
- 2J. Duan, Y. Zhao, B. He, Q. Tang, Small 2018, 14, 1704443.
- 3J. Deng, J. Li, Z. Yang, M. Wang, J. Mater. Chem. C 2019, 7, 12415.
- 4Y. Wang, K. Wang, W. S. Subhani, C. Zhang, X. Jiang, S. Wang, H. Bao, L. Liu, L. Wan, S. F. Liu, Small 2020, 16, 1907283.
- 5J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, G. Zhao, L. Zhang, J. Mater. Chem. C 2020, 8, 6326.
- 6I. Chung, B. Lee, J. He, R. P. Chang, M. G. Kanatzidis, Nature 2012, 485, 486.
- 7K. P. Marshall, M. Walker, R. I. Walton, R. A. Hatton, Nat. Energy 2016, 1, 16178.
- 8M. Konstantakou, T. Stergiopoulos, J. Mater. Chem. A 2017, 5, 11518.
- 9J. Jiang, C. K. Onwudinanti, R. A. Hatton, P. A. Bobbert, S. Tao, J. Phys Chem C Nanomater Interf. 2018, 122, 17660.
- 10T. Ye, X. Wang, K. Wang, S. Ma, D. Yang, Y. Hou, J. Yoon, K. Wang, S. Priya, ACS Energy Lett. 2021, 6, 1480.
- 11G. Wang, J. Chang, J. Bi, M. Lei, C. Wang, Q. Qiao, Sol. RRL 2022, 6, 2100841.
- 12J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587.
- 13I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579.
- 14E. L. Da Silva, J. M. Skelton, S. C. Parker, A. Walsh, Phys. Rev. B 2015, 91, 144107.
- 15J. H. Heo, J. Kim, H. Kim, S. H. Moon, S. H. Im, K. H. Hong, J. Phys. Chem. Lett. 2018, 9, 6024.
- 16G. Chen, P. Li, T. Xue, M. Su, J. Ma, Y. Zhang, T. Wu, L. Han, M. Aldamasy, M. Li, Z. Li, J. Ma, S. Chen, Y. Zhao, F. Wang, Y. Song, Small 2021, 17, 2101380.
- 17B. Lee, C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C. Y. Yeh, T. J. Marks, M. G. Kanatzidis, R. P. Chang, J. Am. Chem. Soc. 2014, 136, 15379.
- 18Z. Xiao, Y. Zhou, H. Hosono, T. Kamiya, Phys. Chem. Chem. Phys. 2015, 17, 18900.
- 19D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, M. G. Kanatzidis, ACS Energy Lett. 2017, 2, 982.
- 20F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, Joule 2018, 2, 2732.
- 21J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu, W. Yuan, H. Yu, L. Chao, T. Niu, Y. Yang, X. Gao, Y. Chen, W. Huang, ACS Energy Lett. 2019, 4, 1513.
- 22L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 1171.
- 23L. Gao, X. Li, B. Traore, Y. Zhang, J. Fang, Y. Han, J. Even, C. Katan, K. Zhao, S. Liu, M. G. Kanatzidis, J. Am. Chem. Soc. 2021, 143, 12063.
- 24X. Li, J. M. Hoffman, M. G. Kanatzidis, Chem. Rev. 2021, 121, 2230.
- 25W. Ke, L. Mao, C. C. Stoumpos, J. Hoffman, I. Spanopoulos, A. D. Mohite, M. G. Kanatzidis, Adv. Energy Mater. 2019, 9, 1803384.
- 26H. J. Jung, C. C. Stompus, M. G. Kanatzidis, V. P. Dravid, Nano Lett. 2019, 19, 6109.
- 27J. C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, A. D. Mohite, Nat. Nanotechnol. 2020, 15, 969.
- 28M. Kumagai, T. Takagahara, Phys Rev B Condens Matt. 1989, 40, 12359.
- 29E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, T. Ishihara, Phys Rev B Condens Matt. 1995, 51, 14370.
- 30X. Chen, H. Lu, K. Wang, Y. Zhai, V. Lunin, P. C. Sercel, M. C. Beard, J. Am. Chem. Soc. 2021, 143, 19438.
- 31J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite, Nat. Commun. 2018, 9, 2254.
- 32C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, ChemSusChem 2019, 12, 1560.
- 33Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang, Adv. Mater. 2018, 30, 1703487.
- 34M. Pazoki, T. Edvinsson, Sustainable Energy Fuels 2018, 2, 1430.
- 35Q. Sun, Z. Fang, Y. Zheng, Z. Yang, F. Hu, Y. Yang, W. Yang, X. Hou, M.-H. Shang, J. Mater. Chem. A 2022, 10, 3996.
- 36Z. Fang, M. Shang, Y. Zheng, T. Zhang, Z. Du, G. Wang, X. Duan, K.-C. Chou, C.-H. Lin, W. Yang, X. Hou, T. Wu, Mater. Horiz. 2020, 7, 1042.
- 37V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 38L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 3775.
- 39Z. Fang, X. Hou, Y. Zheng, Z. Yang, K. C. Chou, G. Shao, M. Shang, W. Yang, T. Wu, Adv. Funct. Mater. 2021, 31, 2102330.
- 40Q. Li, D. Cao, X. Liu, X. Zhou, X. Chen, H. Shu, J. Mater. Chem. A 2021, 9, 6476.
- 41P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Chem. Mater. 2014, 26, 6068.
- 42W. Meng, X. Wang, Z. Xiao, J. Wang, D. B. Mitzi, Y. Yan, J. Phys. Chem. Lett. 2017, 8, 2999.
- 43N. Wang, Y. Zhou, M.-G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, X. W. Sun, Adv. Energy Mater. 2016, 6, 1601130.
- 44G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982.