Steering the Pathway of Plasmon-Enhanced Photoelectrochemical CO2 Reduction by Bridging Si and Au Nanoparticles through a TiO2 Interlayer
Kang Wang
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorNingbo Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorBin Xu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZhihe Wei
Soochow Institute of Energy and Material Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCong Chen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorHao Xie
Department of Physics, School of Science, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Weixiang Ye
Department of Physics, School of Science, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Hainan University, Haikou, 570228 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Peng
Soochow Institute of Energy and Material Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mingrong Shen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ronglei Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorKang Wang
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorNingbo Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorBin Xu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZhihe Wei
Soochow Institute of Energy and Material Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCong Chen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
Search for more papers by this authorHao Xie
Department of Physics, School of Science, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Weixiang Ye
Department of Physics, School of Science, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Hainan University, Haikou, 570228 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yang Peng
Soochow Institute of Energy and Material Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mingrong Shen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ronglei Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Photoelectrochemical (PEC) conversion of CO2 in an aqueous medium into high-energy fuels is a creative strategy for storing solar energy and closing the anthropogenic carbon cycle. However, the rational design of catalytic architectures to selectively and efficiently produce a target product such as CO has remained a grand challenge. Herein, an efficient and selective Si photocathode for CO production is reported by utilizing a TiO2 interlayer to bridge the Au nanoparticles and n+p-Si. The TiO2 interlayer can not only effectively protect and passivate Si surface, but can also exhibit outstanding synergies with Au nanoparticles to greatly promote CO2 reduction kinetics for CO production through stabilizing the key reaction intermediates. Specifically, the TiO2 layer and Au nanoparticles work concertedly to enhance the separation of localized surface plasmon resonance generated hot carriers, contributing to the improved activity and selectivity for CO production by utilizing the hot electrons generated in Au nanoparticles during PEC CO2 reduction. The optimized Au/TiO2/n+p-Si photocathode exhibits a Faradaic efficiency of 86% and a partial current density of −5.52 mA cm−2 at −0.8 VRHE for CO production, which represent state-of-the-art performance in this field. Such a plasmon-enhanced strategy may pave the way for the development of high-performance PEC photocathodes for energy-efficient CO2 utilization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202201882-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Das, J. Pérez-Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. C. Gates, S. Kawi, Chem. Soc. Rev. 2020, 49, 2937.
- 2B. Shan, S. Vanka, T.-T. Li, L. Troian-Gautier, M. K. Brennaman, Z. Mi, T. J. Meyer, Nat. Energy 2019, 4, 290.
- 3J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, J. Feldmann, ACS Catal. 2018, 8, 3602.
- 4P. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1900281.
- 5S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji, H. Park, Adv. Energy Mater. 2014, 4, 1301614.
- 6P. Wen, H. Li, X. Ma, R. Lei, X. Wang, S. M. Geyer, Y. Qiu, J. Mater. Chem. A 2021, 9, 3589.
- 7C. Li, T. Wang, B. Liu, M. Chen, A. Li, G. Zhang, M. Du, H. Wang, S. F. Liu, J. Gong, Energy Environ. Sci. 2019, 12, 923.
- 8P. Zhang, S. Wang, B. Y. Guan, X. W. Lou, Energy Environ. Sci. 2019, 12, 164.
- 9K. D. Yang, Y. Ha, U. Sim, J. An, C. W. Lee, K. Jin, Y. Kim, J. Park, J. S. Hong, J. H. Lee, H.-E. Lee, H.-Y. Jeong, H. Kim, K. T. Nam, Adv. Funct. Mater. 2016, 26, 233.
- 10Gurudayal, J. W. B., J. Bullock, H. Wang, J. Eichhorn, C. Towle, A. Javey, F. M. Toma, N. Mathews, J. W. Ager, Energy Environ. Sci. 2019, 12, 1068.
- 11J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, J. Oh, Adv. Energy Mater. 2017, 7, 1601103.
- 12Y. Hu, F. Chen, P. Ding, H. Yang, J. Chen, C. Zha, Y. Li, J. Mater. Chem. A 2018, 6, 21906.
- 13P. A. Kempler, M. H. Richter, W.-H. Cheng, B. S. Brunschwig, N. S. Lewis, ACS Energy Lett. 2020, 2528.
- 14D.-R. Yang, L. Liu, Q. Zhang, Y. Shi, Y. Zhou, C. Liu, F.-B. Wang, X.-H. Xia, Sci. Bull. 2020, 65, 796.
- 15R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, J. Phys. Chem. B 1998, 102, 974.
- 16R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, Appl. Surf. Sci. 1997, 121, 301.
- 17S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, J. Am. Chem. Soc. 2011, 133, 1216.
- 18Q. Ding, J. Zhai, M. Caban-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, S. Jin, Adv. Mater. 2015, 27, 6511.
- 19G. Loget, B. Fabre, S. Fryars, C. Mériadec, S. Ababou-Girard, ACS Energy Lett. 2017, 2, 569.
- 20Q. Kong, D. Kim, C. Liu, Y. Yu, Y. Su, Y. Li, P. Yang, Nano Lett. 2016, 16, 5675.
- 21T. Zhu, M. N. Chong, Nano Energy 2015, 12, 347.
- 22H. Li, P. Wen, D. S. Itanze, Z. D. Hood, X. Ma, M. Kim, S. Adhikari, C. Lu, C. Dun, M. Chi, Y. Qiu, S. M. Geyer, Nat. Commun. 2019, 10, 5724.
- 23T. Yao, X. An, H. Han, J. Q. Chen, C. Li, Adv. Energy Mater. 2018, 8, 1800210.
- 24Z. Luo, T. Wang, J. Gong, Chem. Soc. Rev. 2019, 48, 2158.
- 25R. Fan, W. Dong, L. Fang, F. Zheng, M. Shen, J. Mater. Chem. A 2017, 5, 18744.
- 26W. Hong, Q. Cai, R. Ban, X. He, C. Jian, J. Li, J. Li, W. Liu, ACS Appl. Mater. Interfaces 2018, 10, 6262.
- 27H. Zhu, H. Xie, Y. Yang, K. Wang, F. Zhao, W. Ye, W. Ni, Nano Lett. 2020, 20, 2423.
- 28J. Zhao, S. Xue, R. Ji, B. Li, J. Li, Chem. Soc. Rev. 2021, 50, 12070.
- 29N. Li, R. Jiang, Y. Li, J. Zhou, Q. Ma, S. Shen, M. Liu, ACS Sustainable Chem. Eng. 2019, 7, 11455.
- 30L. Mascaretti, A. Dutta, S. Kment, V. M. Shalaev, A. Boltasseva, R. Zboril, A. Naldoni, Adv. Mater. 2019, 31, 1805513.
- 31S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang, Y. Du, X. Han, J. Sun, P. Xu, Adv. Mater. 2021, 33, 2000086.
- 32S. Yu, A. J. Wilson, G. Kumari, X. Zhang, P. K. Jain, ACS Energy Lett. 2017, 2, 2058.
- 33S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
- 34A. Manzi, T. Simon, C. Sonnleitner, M. Döblinger, R. Wyrwich, O. Stern, J. K. Stolarczyk, J. Feldmann, J. Am. Chem. Soc. 2015, 137, 14007.
- 35R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, M. Shen, ACS Appl. Mater. Interfaces 2017, 9, 6123.
- 36R. Fan, J. Zhou, W. Xun, S. Cheng, S. Vanka, T. Cai, S. Ju, Z. Mi, M. Shen, Nano Energy 2020, 71, 104631.
- 37R. Fan, S. Cheng, G. Huang, Y. Wang, Y. Zhang, S. Vanka, G. A. Botton, Z. Mi, M. Shen, J. Mater. Chem. A 2019, 7, 2200.
- 38W. Xun, Y. Wang, R. Fan, Q. Mu, S. Ju, Y. Peng, M. Shen, ACS Energy Lett. 2021, 6, 267.
- 39S. Chu, P. Ou, R. T. Rashid, P. Ghamari, R. Wang, H. N. Tran, S. Zhao, H. Zhang, J. Song, Z. Mi, iScience 2020, 23, 101390.
- 40J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, T. F. Jaramillo, Adv. Energy Mater. 2014, 4, 1400739.
- 41A. M. Ismail, G. F. Samu, Á. Balog, E. Csapó, C. Janáky, ACS Energy Lett. 2019, 4, 48.
- 42A. Heller, E. Aharon-Shalom, W. A. Bonner, B. Miller, J. Am. Chem. Soc. 1982, 104, 6942.
- 43Y. Zhao, N. C. Anderson, K. Zhu, J. A. Aguiar, J. A. Seabold, J. van de Lagemaat, H. M. Branz, N. R. Neale, J. Oh, Nano Lett. 2015, 15, 2517.
- 44D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, P. C. K. Vesborg, Energy Environ. Sci. 2015, 8, 650.
- 45B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, I. Chorkendorff, J. Am. Chem. Soc. 2013, 135, 1057.
- 46Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc. 2014, 136, 8504.
- 47M. Chen, Y. Liu, C. Li, A. Li, X. Chang, W. Liu, Y. Sun, T. Wang, J. Gong, Energy Environ. Sci. 2018, 11, 2025.
- 48H. Li, B. Liu, S. Feng, H. Li, T. Wang, J. Gong, J. Mater. Chem. A 2020, 8, 224.
- 49D. Tafalla, P. Salvador, R. M. Benito, J. Electrochem. Soc. 1990, 137, 1810.
- 50J. Li, S. K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Nat. Commun. 2013, 4, 2651.
- 51C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645.
- 52J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631.
- 53D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, J. Am. Chem. Soc. 2017, 139, 5652.
- 54S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou, I. Shih, J. Song, Z. Mi, J. Am. Chem. Soc. 2018, 140, 7869.
- 55R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, M. Shen, Appl. Phys. Lett. 2016, 109, 233901.
- 56J. S. DuChene, G. Tagliabue, A. J. Welch, W. H. Cheng, H. A. Atwater, Nano Lett. 2018, 18, 2545.
- 57L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, E. T. Yu, Nat. Nanotechnol. 2015, 10, 84.
- 58C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 2002, 88, 077402.
- 59C. Ros, T. Andreu, M. D. Hernandez-Alonso, G. Penelas-Perez, J. Arbiol, J. R. Morante, ACS Appl. Mater. Interfaces 2017, 9, 17932.
- 60X. Sun, J. Jiang, Y. Yang, Y. Shan, L. Gong, M. Wang, ACS Appl. Mater. Interfaces 2019, 11, 19132.
- 61T. Wang, S. Liu, H. Li, C. Li, Z. Luo, J. Gong, Ind. Eng. Chem. Res. 2019, 58, 5510.
- 62H. Li, T. Wang, S. Liu, Z. Luo, L. Li, H. Wang, Z.-J. Zhao, J. Gong, Angew. Chem., Int. Ed. 2021, 60, 4034.