Equilibrated PtIr/IrOx Atomic Heterojunctions on Ultrafine 1D Nanowires Enable Superior Dual-Electrocatalysis for Overall Water Splitting
Hongpu Huang
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorLuhong Fu
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorWeiqiang Kong
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorHairui Ma
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Xue Zhang
Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunlin Cai
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorShupeng Wang
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhaoxiong Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Shuifen Xie
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHongpu Huang
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorLuhong Fu
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorWeiqiang Kong
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorHairui Ma
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorCorresponding Author
Xue Zhang
Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunlin Cai
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorShupeng Wang
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
Search for more papers by this authorZhaoxiong Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Shuifen Xie
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Dual-active-sites atomically coupled on ultrafine 1D nanowires (NWs) can offer synergic atomic heterojunctions (AHJs) and high atomic-utilization toward multipurpose and superior catalysis. Here, ≈2-nm-thick PtIr/IrOx hybrid NWs are elaborately synthesized with equilibrated Pt/IrOx AHJs as high-efficiency bifunctional electrocatalysts for overall water splitting. Mechanism studies reveal the atomically coupled Pt–IrOx dual-sites are favorable for facilitating water dissociation, alleviating the binding of H* on Pt sites and inversely regulating the *OH adsorption and oxidation on bridge Ir–Ir sites. By simply equilibrating the Pt–IrOx ratio, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be substantially accelerated. In particular, Pt-rich PtIr/IrOx-30 NWs attain 11-fold enhancements for HER compared to Pt/C in 1.0 m KOH, while IrOx-rich PtIr/IrOx-50 NWs express about five times mass activity referring to Ir/C for OER. Remarkably, the ratio-optimized PtIr/IrOx NWs electrode couple achieves a durably continuous H2 production under a substantially low cell voltage.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202201333-sup-0001-SuppMat.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao, S.-H. Yu, Adv. Mater. 2021, 33, 2007100.
- 2J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K.-Y. Wong, Chem. Rev. 2020, 120, 851.
- 3F. Lu, M. Zhou, Y. Zhou, X. Zeng, Small 2017, 13, 1701931.
- 4G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291.
- 5L. Li, P. Wang, Q. Shao, X. Huang, Chem. Soc. Rev. 2020, 49, 3072.
- 6J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
- 7R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.
- 8D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Nano Energy 2016, 29, 29.
- 9F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Joule 2021, 5, 1704.
- 10Z. Lyu, X. G. Zhang, Y. Wang, K. Liu, C. Qiu, X. Liao, W. Yang, Z. Xie, S. Xie, Angew. Chem., Int. Ed. 2021, 60, 16093.
- 11C. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey, S.-Z. Qiao, Chem 2019, 5, 2429.
- 12R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550.
- 13D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Nat. Chem. 2013, 5, 300.
- 14B. Ruqia, S. I. Choi, ChemSusChem 2018, 11, 2643.
- 15T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, J. Catal. 2004, 224, 206.
- 16L. Zhuang, F. Xu, K. Wang, J. Li, C. Liang, W. Zhou, Z. Xu, Z. Shao, Z. Zhu, Small 2021, 17, 2100121.
- 17G. Wan, J. W. Freeland, J. Kloppenburg, G. Petretto, J. N. Nelson, D.-Y. Kuo, C.-J. Sun, J. Wen, J. T. Diulus, G. S. Herman, Y. Dong, R. Kou, J. Sun, S. Chen, K. M. Shen, D. G. Schlom, G.-M. Rignanese, G. Hautier, D. D. Fong, Z. Feng, H. Zhou, J. Suntivich, Sci. Adv. 2021, 7, eabc7323.
- 18J. Zhu, Z. Chen, M. Xie, Z. Lyu, M. Chi, M. Mavrikakis, W. Jin, Y. Xia, Angew. Chem., Int. Ed. 2019, 58, 7244.
- 19L. Fu, X. Zeng, G. Cheng, W. Luo, ACS Appl. Mater. Interfaces 2018, 10, 24993.
- 20K. P. Kepp, Inorg. Chem. 2016, 55, 9461.
- 21P. Wang, Q. Shao, X. Huang, Joule 2018, 2, 2511.
- 22S. M. Alia, S. Shulda, C. Ngo, S. Pylypenko, B. S. Pivovar, ACS Catal. 2018, 8, 2111.
- 23Y. Wang, Y. Yuan, H. Huang, Chin. J. Chem. 2021, 39, 1389.
- 24H. Xu, H. Shang, C. Wang, Y. Du, Adv. Funct. Mater. 2020, 30, 2000793.
- 25W. Wang, X. Chen, X. Zhang, J. Ye, F. Xue, C. Zhen, X. Liao, H. Li, P. Li, M. Liu, Q. Kuang, Z. Xie, S. Xie, Nano Energy 2020, 71, 104623.
- 26W. Wang, X. Chen, J. Ye, Y. Zhang, Y. Han, X. Chen, K. Liu, S. Xie, Sci. China Mater. 2020, 64, 1139.
- 27X. Chen, W. Wang, X. Chen, X. Liao, Z. Lyu, K. Liu, S. Xie, Nanoscale 2021, 13, 2632.
- 28K. Liu, W. Wang, P. Guo, J. Ye, Y. Wang, P. Li, Z. Lyu, Y. Geng, M. Liu, S. Xie, Adv. Funct. Mater. 2019, 29, 1806300.
- 29M. Li, Z. Zhao, Z. Xia, M. Luo, Q. Zhang, Y. Qin, L. Tao, K. Yin, Y. Chao, L. Gu, W. Yang, Y. Yu, G. Lu, S. Guo, Angew. Chem., Int. Ed. 2021, 60, 8243.
- 30Q. Wang, X. Huang, Z. L. Zhao, M. Wang, B. Xiang, J. Li, Z. Feng, H. Xu, M. Gu, J. Am. Chem. Soc. 2020, 142, 7425.
- 31T. W. van Deelen, C. H Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955.
- 32Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li, H. Tan, J. Zhou, W. Zhang, H. Li, S. Guo, Angew. Chem., Int. Ed. 2021, 60, 26592.
- 33J. Guan, Y. Zan, R. Shao, J. Niu, M. Dou, B. Zhu, Z. Zhang, F. Wang, Small 2020, 16, 2005048.
- 34N. Zhang, Y. Chai, Energy Environ. Sci. 2021, 14, 4647.
- 35X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066.
- 36Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 2018, 140, 9046.
- 37P. Wang, Q. Shao, J. Guo, L. Bu, X. Huang, Chem. Mater. 2020, 32, 3144.
- 38Y. Zhu, X. Zhu, L. Bu, Q. Shao, Y. Li, Z. Hu, C. T. Chen, C. W. Pao, S. Yang, X. Huang, Adv. Funct. Mater. 2020, 30, 2004310.
- 39Y. Yan, R. Zhang, Y. Yu, Z. Sun, R. Che, B. Wei, A. P. LaGrow, Z. Wang, W. Zhou, Appl. Catal. B Environ. 2021, 291, 120100.
- 40X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, C. M. Li, Nano Energy 2019, 62, 117.
- 41Y. Q. Zhou, L. Zhang, H. L. Suo, W. Hua, S. Indris, Y. Lei, W. H. Lai, Y. X. Wang, Z. Hu, H. K. Liu, S. L. Chou, S. X. Dou, Adv. Funct. Mater. 2021, 31, 2101797.
- 42Y. Pi, Y. Xu, L. Li, T. Sun, B. Huang, L. Bu, Y. Ma, Z. Hu, C. W. Pao, X. Huang, Adv. Funct. Mater. 2020, 30, 2004375.
- 43Z. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He, S. Mu, Energy Environ. Sci. 2019, 12, 952.
- 44G. Meng, W. Sun, A. A. Mon, X. Wu, L. Xia, A. Han, Y. Wang, Z. Zhuang, J. Liu, D. Wang, Y. Li, Adv. Mater. 2019, 31, 1903616.
- 45J.-J. Velasco-Vélez, E. A. Carbonio, C.-H. Chuang, C.-J. Hsu, J.-F. Lee, R. Arrigo, M. Havecker, R. Wang, M. Plodinec, F. R. Wang, A. Centeno, A. Zurutuza, L. J. Falling, R. V. Mom, S. Hofmann, R. Schlögl, A. Knop–Gericke, T. E. Jones, J. Am. Chem. Soc. 2021, 143, 12524.
- 46S. Wei, X. Cui, Y. Xu, B. Shang, Q. Zhang, L. Gu, X. Fan, L. Zheng, C. Hou, H. Huang, S. Wen, W. Zheng, ACS Energy Lett. 2019, 4, 368.
- 47D. Li, Z. Zong, Z. Tang, Z. Liu, S. Chen, Y. Tian, X. Wang, ACS Sustainable Chem. Eng. 2018, 6, 5105.
- 48L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, T. F. Jaramillo, Science 2016, 353, 1011.
- 49J. Zhang, G. Wang, Z. Liao, P. Zhang, F. Wang, X. Zhuang, E. Zschech, X. Feng, Nano Energy 2017, 40, 27.
- 50J. Zheng, W. Sheng, Z. Zhuang, B. Xu, Y. Yan, Sci. Adv. 2016, 2, e1501602.
- 51J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G. C. Wang, S. Guo, Adv. Mater. 2017, 29, 1703798.
- 52L. Fu, G. Cheng, W. Luo, J. Mater. Chem. A 2017, 5, 24836.