Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits
Ping Duan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYaping Wang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorLichuan Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorKai Qu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Junyang Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qian-Chong Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhong-Ning Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorPing Duan
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYaping Wang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorLichuan Chen
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorKai Qu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Junyang Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qian-Chong Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhong-Ning Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjing Hong
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Investigating the correlations of electron transport between multiple channels shows vital promises for the design of molecule-scale circuits with logic operations. To control the electron transport through multiple channels, the modulation of electronegativity shows an effective frontier orbit control method with high universality to explore the interactions between transport channels. Here, two series of compounds with a single nitrogenous conductive channel (Sg) and dual-channels (Db) are designed to explore the influence of electronegativity on electron tunneling transport. Single-molecule conductance measured via the scanning tunneling microscope break junction technique (STM-BJ) reveals that the conductance of Db series is significantly suppressed as the electronegativity of nitrogen becomes negative, while the suppression on Sg is less obvious. Theoretical calculations confirm that the effect of electronegativity extends to a dispersive range of molecular frameworks owing to the delocalized orbital distribution from the dual-channel structure, resulting in a more significant conductance suppression effect than that on the single-channel. This study provides the experimental and theoretical potentials of electronegativity gating for molecular circuits.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202200361-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Rev. Mater. 2016, 1, 16002; b) H. L. Chen, J. F. Stoddart, Nat. Rev. Mater. 2021, 6, 804; c) D. M. Guldi, H. Nishihara, L. Venkataraman, Chem. Soc. Rev. 2015, 44, 842; d) S. V. Aradhya, L. Venkataraman, Nat. Nanotechnol. 2013, 8, 399; e) H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, M. S. Hybertsen, Nat. Nanotechnol. 2012, 7, 663; f) D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318.
- 2a) Y.-H. Wang, D.-F. Li, Z.-W. Hong, J.-H. Liang, D. Han, J.-F. Zheng, Z.-J. Niu, B.-W. Mao, X.-S. Zhou, Electrochem. Commun. 2014, 45, 83; b) L. Chen, Y.-H. Wang, B. He, H. Nie, R. Hu, F. Huang, A. Qin, X.-S. Zhou, Z. Zhao, B. Z. Tang, Angew. Chem., Int. Ed. 2015, 54, 4231; c) S. Zhen, J.-C. Mao, L. Chen, S. Ding, W. Luo, X.-S. Zhou, A. Qin, Z. Zhao, B. Z. Tang, Nano Lett. 2018, 18, 4200; d) H. Li, M. H. Garner, Z. Shangguan, Y. Chen, Q. Zheng, T. A. Su, M. Neupane, T. Liu, M. L. Steigerwald, F. Ng, C. Nuckolls, S. Xiao, G. C. Solomon, L. Venkataraman, J. Am. Chem. Soc. 2018, 140, 15080; e) C. Joachim, Nat. Nanotechnol. 2012, 7, 620; f) P. Duan, K. Qu, J.-Y. Wang, B. Zeng, C. Tang, H.-F. Su, Q.-C. Zhang, W. Hong, Z.-N. Chen, Cell Rep. Phys. Sci. 2021, 2, 100342; g) H. Chen, H. Zheng, C. Hu, K. Cai, Y. Jiao, L. Zhang, F. Jiang, I. Roy, Y. Qiu, D. Shen, Y. Feng, F. M. Alsubaie, H. Guo, W. Hong, J. F. Stoddart, Matter 2020, 2, 378; h) H. Chen, S. Hou, Q. Wu, F. Jiang, P. Zhou, L. Zhang, Y. Jiao, B. Song, Q.-H. Guo, X.-Y. Chen, W. Hong, C. J. Lambert, J. F. Stoddart, Matter 2021, 4, 3662.
- 3a) X. Liu, S. Sangtarash, D. Reber, D. Zhang, H. Sadeghi, J. Shi, Z.-Y. Xiao, W. Hong, C. J. Lambert, S.-X. Liu, Angew. Chem., Int. Ed. 2017, 56, 173; b) M. Gantenbein, L. Wang, A. A. Al-jobory, A. K. Ismael, C. J. Lambert, W. Hong, M. R. Bryce, Sci. Rep. 2017, 7, 1794; c) Z.-H. Zhao, L. Wang, S. Li, W.-D. Zhang, G. He, D. Wang, S.-M. Hou, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 8068; d) L. Venkataraman, Y. S. Park, A. C. Whalley, C. Nuckolls, M. S. Hybertsen, M. L. Steigerwald, Nano Lett. 2007, 7, 502; e) S. Yuan, C. Dai, J. Weng, Q. Mei, Q. Ling, L. Wang, W. Huang, J. Phys. Chem. A 2011, 115, 4535; f) J. A. Ivie, N. D. Bamberger, K. N. Parida, S. Shepard, D. Dyer, A. Saraiva-Souza, R. Himmelhuber, D. V. McGrath, M. Smeu, O. L. A. Monti, ACS Appl. Mater. Interfaces 2021, 13, 4267; g) M. H. Garner, G. C. Solomon, M. Strange, J. Phys. Chem. C 2016, 120, 9097.
- 4a) A. L. Appleton, S. M. Brombosz, S. Barlow, J. S. Sears, J. L. Bredas, S. R. Marder, U. H. Bunz, Nat. Commun. 2010, 1, 91; b) Y. Wang, J. Li, Z. Zhou, R. Zhou, Q. Sun, P. Wu, Nat. Commun. 2021, 12, 526.
- 5a) Y. Yang, M. Gantenbein, A. Alqorashi, J. Wei, S. Sangtarash, D. Hu, H. Sadeghi, R. Zhang, J. Pi, L. Chen, X. Huang, R. Li, J. Liu, J. Shi, W. Hong, C. J. Lambert, M. R. Bryce, J. Phys. Chem. C 2018, 122, 14965; b) R. Li, Z. Lu, Y. Cai, F. Jiang, C. Tang, Z. Chen, J. Zheng, J. Pi, R. Zhang, J. Liu, Z.-B. Chen, Y. Yang, J. Shi, W. Hong, H. Xia, J. Am. Chem. Soc. 2017, 139, 14344; c) M. Saha, S. Bandyopadhyay, J. Phys. Chem. C 2021, 125, 6427; d) Z. Bei, Y. Huang, Y. Chen, Y. Cao, J. Li, Chem. Sci. 2020, 11, 6026.
- 6a) M. Feroci, A. Inesi, L. Palombi, G. Sotgiu, J. Org. Chem. 2002, 67, 1719; b) J. Liu, X. Zhao, Q. Al-Galiby, X. Huang, J. Zheng, R. Li, C. Huang, Y. Yang, J. Shi, D. Z. Manrique, C. J. Lambert, M. R. Bryce, W. Hong, Angew. Chem., Int. Ed. 2017, 56, 13061.
- 7C. Tang, L. Huang, S. Sangtarash, M. Noori, H. Sadeghi, H. Xia, W. Hong, J. Am. Chem. Soc. 2021, 143, 9385.
- 8a) Z. Cai, N. Zhang, M. A. Awais, A. S. Filatov, L. Yu, Angew. Chem., Int. Ed. 2018, 57, 6442; b) H. Chen, V. Brasiliense, J. Mo, L. Zhang, Y. Jiao, Z. Chen, L. O. Jones, G. He, Q.-H. Guo, X.-Y. Chen, B. Song, G. C. Schatz, J. F. Stoddart, J. Am. Chem. Soc. 2021, 143, 2886.
- 9a) N. Zhang, W.-Y. Lo, A. Jose, Z. Cai, L. Li, L. Yu, Adv. Mater. 2017, 29, 1701248; b) W.-Y. Lo, W. Bi, L. Li, I. H. Jung, L. Yu, Nano Lett. 2015, 15, 958; c) L. Li, W.-Y. Lo, Z. Cai, N. Zhang, L. Yu, Chem. Sci. 2016, 7, 3137.
- 10a) B. Xu, J. Tao Nongjian, Science 2003, 301, 1221; b) W. Haiss, C. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, R. J. Nichols, Nat. Mater. 2006, 5, 995.
- 11a) T. Bzeih, T. Naret, A. Hachem, N. Jaber, A. Khalaf, J. Bignon, J.-D. Brion, M. Alami, A. Hamze, Chem. Commun. 2016, 52, 13027; b) V. Pascanu, Q. Yao, A. Bermejo Gomez, M. Gustafsson, Y. Yun, W. Wan, L. Samain, X. Zou, B. Martin-Matute, Chemistry 2013, 19, 17483.
- 12a) A. J. Airaksinen, K. A. Tuppurainen, S. E. Lotjonen, M. Niemitz, M. X. Yu, J. J. Vepsalainen, R. Laatikainen, J. Hiltunen, K. A. Bergstrom, Tetrahedron 1999, 55, 10537; b) A. Kuhn, K. G. von Eschwege, J. Conradie, J. Phys. Org. Chem. 2012, 25, 58; c) O. Exner, S. Bohm, J. Phys. Org. Chem. 2006, 19, 393; d) N. Janes, E. Oldfield, J. Am. Chem. Soc. 2002, 107, 6769.
- 13S. Wu, M. T. González, R. Huber, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Nat. Nanotechnol. 2008, 3, 569.
- 14a) O. Adak, E. Rosenthal, J. Meisner, E. F. Andrade, A. N. Pasupathy, C. Nuckolls, M. S. Hybertsen, L. Venkataraman, Nano Lett. 2015, 15, 4143; b) C. Tang, Y. Tang, Y. Ye, Z. Yan, Z. Chen, L. Chen, L. Zhang, J. Liu, J. Shi, H. Xia, W. Hong, Chem 2020, 6, 2770.
- 15Z. Tan, W. Jiang, C. Tang, L.-C. Chen, L. Chen, J. Liu, Z. Liu, H.-L. Zhang, D. Zhang, W. Hong, CCS Chem. 2022, 4, 713.
- 16S. Gunasekaran, D. Hernangómez-Pérez, I. Davydenko, S. Marder, F. Evers, L. Venkataraman, Nano Lett. 2018, 18, 6387.
- 17M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. D., F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, et al, Gaussian, Inc., 2016.
- 18I. V. Alabugin, K. M. Gilmore, P. W. Peterson, Comput. Mol. Sci. 2011, 1, 109.
- 19M. Magoga, C. Joachim, Phys. Rev. B 1999, 59, 16011.
- 20M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401.
- 21S. V. Aradhya, J. S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, M. L. Steigerwald, C. Nuckolls, L. Venkataraman, Nano Lett. 2012, 12, 1643.