All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor
Corresponding Author
Pragati A. Shinde
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorNilesh R. Chodankar
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorCorresponding Author
Mohammad Ali Abdelkareem
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272 United Arab Emirates
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSwati J. Patil
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorYoung-Kyu Han
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorKhaled Elsaid
Chemical Engineering Department, Texas A&M University, College Station, TX, 77843-3122 USA
Search for more papers by this authorCorresponding Author
Abdul Ghani Olabi
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272 United Arab Emirates
Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Pragati A. Shinde
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorNilesh R. Chodankar
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorCorresponding Author
Mohammad Ali Abdelkareem
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272 United Arab Emirates
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSwati J. Patil
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorYoung-Kyu Han
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 South Korea
Search for more papers by this authorKhaled Elsaid
Chemical Engineering Department, Texas A&M University, College Station, TX, 77843-3122 USA
Search for more papers by this authorCorresponding Author
Abdul Ghani Olabi
Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272 United Arab Emirates
Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272 United Arab Emirates
Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0–1.6 V, delivers a high specific energy density of 87.6 Wh kg−1 at a specific power density of 914.3 W kg−1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smll202200248-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
- 2M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
- 3J. Zhang, J. Jiang, H. Li, X. Zhao, Energy Environ. Sci. 2011, 4, 4009.
- 4H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Energy Storage Mater. 2020, 28, 122.
- 5Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Adv. Funct. Mater. 2017, 27, 1605307.
- 6J. Sun, X. Du, R. Wu, Y. Zhang, C. Xu, H. Chen, ACS Appl. Energy Mater. 2020, 3, 8026.
- 7P. A. Shinde, N. R. Chodankar, S. Lee, E. Jung, S. Aftab, Y.-K. Han, S. C. Jun, Chem. Eng. J. 2021, 405, 127029.
- 8T. S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 2019, 9, 1902007.
- 9Y.-W. Lee, B.-S. Kim, J. Hong, H. Choi, H.-S. Jang, B. Hou, S. Pak, J. Lee, S.-H. Lee, S. M. Morris, Nano Energy 2017, 37, 15.
- 10M. Yang, Z. Jin, C. Wang, X. Cao, X. Wang, H. Ma, H. Pang, L. Tan, G. Yang, ACS Appl. Mater. Interfaces 2021, 13, 55040.
- 11C. Wang, M. Yang, X. Wang, H. Ma, Y. Tian, H. Pang, L. Tan, K. Gao, J. Colloid Interface Sci. 2022, 609, 815.
- 12T. Wang, H. C. Chen, F. Yu, X. Zhao, H. Wang, Energy Storage Mater. 2019, 16, 545.
- 13Y. Zhang, A. Pan, Y. Wang, X. Cao, Z. Zhou, T. Zhu, S. Liang, G. Cao, Energy Storage Mater. 2017, 8, 28.
- 14A. Bahaa, M. A. Abdelkareem, A. Y. Mohamed, P. A. Shinde, B. A. Yousef, E. T. Sayed, H. Alawadhi, K.-J. Chae, S. Al-Asheh, A. Olabi, J. Colloid Interface Sci. 2022, 608, 711.
- 15T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Coord. Chem. Rev. 2017, 332, 75.
- 16C. P. Yang, S. Xin, Y. X. Yin, H. Ye, J. Zhang, Y. G. Guo, Angew. Chem., Int. Ed. 2013, 52, 8363.
- 17A. Chang, C. Zhang, Y. Yu, Y. Yu, B. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 41861.
- 18P. Pazhamalai, K. Krishnamoorthy, S. J. Kim, Int. J. Hydrogen Energy 2016, 41, 14830.
- 19C. Tang, Z. Pu, Q. Liu, A. M. Asiri, X. Sun, Y. Luo, Y. He, ChemElectroChem 2015, 2, 1903.
- 20C. Wang, X. Wu, Y. Ma, G. Mu, Y. Li, C. Luo, H. Xu, Y. Zhang, J. Yang, X. Tang, J. Mater. Chem. A 2018, 6, 8299.
- 21Z.-B. Zhai, K.-J. Huang, X. Wu, Nano Energy 2018, 47, 89.
- 22Y. A. Dakka, J. Balamurugan, R. Balaji, N. H. Kim, J. H. Lee, Chem. Eng. J. 2020, 385, 123455.
- 23A. Li, M. Zhai, M. Luan, J. Hu, Chem. – Eur. J. 2021, 27, 10134.
- 24M. D. Khan, S. U. Awan, C. Zequine, C. Zhang, R. K. Gupta, N. Revaprasadu, ACS Appl. Energy Mater. 2020, 3, 1448.
- 25L. L. Zhang, X. Zhao, Chem. Soc. Rev. 2009, 38, 2520.
- 26A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A 2017, 5, 12653.
- 27B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Energy Environ. Sci. 2016, 9, 102.
- 28H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Energy Storage Mater. 2018, 10, 48.
- 29A. Pramanik, S. Maiti, S. Mahanty, Dalton Trans. 2015, 44, 14604.
- 30S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, J. Mater. Chem. A 2017, 5, 9960.
- 31Y. Liu, X. Cao, L. Cui, Y. Zhong, R. Zheng, D. Wei, C. Barrow, J. M. Razal, W. Yang, J. Liu, J. Power Sources 2019, 437, 226897.
- 32C. Xia, Q. Jiang, C. Zhao, P. M. Beaujuge, H. N. Alshareef, Nano Energy 2016, 24, 78.
- 33Y. Zhao, S. Wang, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Yang, H. Li, L. Wu, Chem. Eng. J. 2021, 417, 127927.
- 34K. Wang, S. Wang, J. Liu, Y. Guo, F. Mao, H. Wu, Q. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 15315.
- 35X. Mao, J.-G. Kim, J. Han, H. S. Jung, S. G. Lee, N. A. Kotov, J. Lee, J. Am. Chem. Soc. 2014, 136, 7189.
- 36K. Xu, H. Ding, K. Jia, X. Lu, P. Chen, T. Zhou, H. Cheng, S. Liu, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2016, 55, 1710.
- 37F. Jia, S. Zhang, X. Zhang, X. Peng, H. Zhang, Y. Xiang, Chem. – Eur. J. 2014, 20, 15941.
- 38C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan, Y. Gan, P. Liang, J. Zhang, H. Wang, Y. Wang, Chem. Eng. J. 2020, 400, 125955.
- 39L. Mi, W. Wei, Z. Zheng, G. Zhu, H. Hou, W. Chen, X. Guan, Nanoscale 2014, 6, 1124.
- 40S. Prabhakaran, J. Balamurugan, N. H. Kim, J. H. Lee, Small 2020, 16, 2000797.
- 41X. Li, H. Wu, C. Guan, A. M. Elshahawy, Y. Dong, S. J. Pennycook, J. Wang, Small 2019, 15, 1803895.
- 42G. D. Park, J. S. Cho, J.-K. Lee, Y. C. Kang, Sci. Rep. 2016, 6, 22432.
- 43Q. Zheng, X. Cheng, H. Li, Catalysts 2015, 5, 1079.
- 44Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, C. Wang, Electrochim. Acta 2017, 250, 327.
- 45Y. Zhu, H. Tang, X. Yun, L. Xi, Z. Hu, J. Alloys Compd. 2021, 866, 158972.
- 46P. A. Shinde, A. C. Lokhande, N. R. Chodankar, A. M. Patil, J. H. Kim, C. D. Lokhande, Electrochim. Acta 2017, 224, 397.
- 47P. A. Shinde, M. F. Khan, M. A. Rehman, E. Jung, Q. N. Pham, Y. Won, S. C. Jun, CrystEngComm. 2020, 22, 6360.
- 48S. Liu, L. Kang, J. Zhang, E. Jung, S. Lee, S. C. Jun, Energy Storage Mater. 2020, 32, 167.
- 49C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.-Q. Lan, J. Bao, J. Zhu, ACS Nano 2014, 8, 3761.
- 50N. R. Chodankar, G. S. R. Raju, B. Park, P. A. Shinde, S. C. Jun, D. P. Dubal, Y. S. Huh, Y.-K. Han, J. Mater. Chem. A 2020, 8, 5721.
- 51Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 2009, 113, 13103.
- 52P. A. Shinde, V. C. Lokhande, T. Ji, C. D. Lokhande, J. Colloid Interface Sci. 2017, 498, 202.
- 53T. Nguyen, M. d. F. Montemor, Adv. Sci. 2019, 6, 1801797.
- 54C. Lu, A. Li, T. Zhai, C. Niu, H. Duan, L. Guo, W. Zhou, Energy Storage Mater. 2020, 26, 472.
- 55L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, C. Yuan, Adv. Funct. Mater. 2018, 28, 1705921.
- 56H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, ACS Sustainable Chem. Eng. 2017, 5, 5951.
- 57A. M. Zardkhoshoui, S. S. H. Davarani, Chem. Eng. J. 2020, 402, 126241.
- 58F. Tavakoli, B. Rezaei, A. R. Taghipour Jahromi, A. A. Ensafi, ACS Appl. Mater. & Interfaces 2020, 12, 418.