Layered Cathode Materials: Precursors, Synthesis, Microstructure, Electrochemical Properties, and Battery Performance
Bin Huang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorLei Cheng
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorXinze Li
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorZaowen Zhao
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorJianwen Yang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorYanwei Li
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorYouyong Pang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorCorresponding Author
Guozhong Cao
Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
E-mail: [email protected]
Search for more papers by this authorBin Huang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorLei Cheng
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorXinze Li
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorZaowen Zhao
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Search for more papers by this authorJianwen Yang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorYanwei Li
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorYouyong Pang
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004 China
Search for more papers by this authorCorresponding Author
Guozhong Cao
Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
The exploitation of clean energy promotes the exploration of next-generation lithium-ion batteries (LIBs) with high energy-density, long life, high safety, and low cost. Ni-rich layered cathode materials are one of the most promising candidates for next-generation LIBs. Numerous studies focusing on the synthesis and modifications of the layered cathode materials are published every year. Many physical features of precursors, such as density, morphology, size distribution, and microstructure of primary particles pass to the resulting cathode materials, thus significantly affecting their electrochemical properties and battery performance. This review focuses on the recent advances in the controlled synthesis of hydroxide precursors and the growth of particles. The essential parameters in controlled coprecipitation are discussed in detail. Some innovative technologies for precursor modifications and for the synthesis of novel precursors are highlighted. In addition, future perspectives of the development of hydroxide precursors are presented.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) Z. Ye, L. Qiu, W. Yang, Z. Wu, Y. Liu, G. Wang, Y. Song, B. Zhong, X. Guo, Chem. – Eur. J. 2021, 27, 4249; b) X. Wang, Y.-L. Ding, Y.-P. Deng, Z. Chen, Adv. Energy Mater. 2020, 10, 1903864.
- 2W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.-M. Kang, W.-S. Yoon, Angew. Chem., Int. Ed. 2020, 59, 2578.
- 3R. J. Brodd, C. Helou, J. Power Sources 2013, 231, 293.
- 4C. M. Julien, A. Mauger, Energies 2020, 13, 6363.
- 5a) S. Jamil, A. Bin Yousaf, S. Hee Yoon, D. Suk Han, L. Yang, P. Kasak, X. Wang, Chem. Eng. J. 2021, 416, 129118; b) G. W. Nam, N.-Y. Park, K.-J. Park, J. Yang, J. Liu, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2019, 4, 2995; c) Y. Lu, Y. Zhang, Q. Zhang, F. Cheng, J. Chen, Particuology 2020, 53, 1; d) L. de Biasi, A. O. Kondrakov, H. Geßwein, T. Brezesinski, P. Hartmann, J. Janek, J. Phys. Chem. C 2017, 121, 26163.
- 6a) X. Tan, M. Zhang, J. Li, D. Zhang, Y. Yan, Z. Li, Ceram. Int. 2020, 46, 21888; b) L.-b. Tang, Y. Liu, H.-x. Wei, C. Yan, Z.-j. He, Y.-j. Li, J.-c. Zheng, J. Energy Chem. 2021, 55, 114.
- 7a) G.-T. Park, H.-H. Ryu, N.-Y. Park, C. S. Yoon, Y.-K. Sun, J. Power Sources 2019, 442, 227242; b) Y. Han, X. Cheng, G. Zhao, W. Qiang, B. Huang, Ceram. Int. 2021, 47, 12104.
- 8a) J. Wang, X. Lu, Y. Zhang, J. Zhou, J. Wang, S. Xu, J. Energy Chem. 2022, 65, 681; b) P. Pang, X. Tan, Z. Wang, Z. Cai, J. Nan, Z. Xing, H. Li, Electrochim. Acta 2021, 365, 137380; c) S.-H. Lee, S.-J. Sim, B.-S. Jin, H.-S. Kim, Mater. Lett. 2020, 270, 127615.
- 9a) K. Liu, Q. Zhang, S. Dai, W. Li, X. Liu, F. Ding, J. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 34153; b) S. Jamil, G. Wang, L. Yang, X. Xie, S. Cao, H. Liu, B. Chang, X. Wang, J. Mater. Chem. A 2020, 8, 21306; c) Y. Huang, S. Cao, X. Xie, C. Wu, S. Jamil, Q. Zhao, B. Chang, Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 2020, 12, 19483.
- 10a) X. Yang, X. Huang, H. Shi, P. Dong, D. Wang, J. Duan, Y. Zhang, J. Energy Chem. 2021, 53, 379; b) C.-K. Yang, L.-Y. Qi, Z. Zuo, R.-N. Wang, M. Ye, J. Lu, H.-H. Zhou, J. Power Sources 2016, 331, 487.
- 11Z. Ruan, Y. Zhu, X. Teng, J. Mater. Sci. 2016, 51, 1400.
- 12D. Li, Z. Peng, W. Guo, C. Yuan, Y. Liu, Y. Zhou, J. Mater. Sci. 2007, 42, 9221.
- 13a) L. Wang, B. Huang, W. Xiong, M. e. Tong, H. Li, S. Xiao, Q. Chen, Y. Li, J. Yang, J. Alloys Compd. 2020, 844, 156034; b) A. Ueda, T. Ohzuku, J. Electrochem. Soc. 1994, 141, 2010.
- 14a) C.-H. Chen, C.-J. Wang, B.-J. Hwang, J. Power Sources 2005, 146, 626; b) H. Liu, J. Li, Z. Zhang, Z. Gong, Y. Yang, J. Solid State Electrochem. 2003, 7, 456; c) H. Lu, H. Zhou, A. M. Svensson, A. Fossdal, E. Sheridan, S. Lu, F. Vullum-Bruer, Solid State Ionics 2013, 249–250, 105.
- 15a) H. M. Wu, J. P. Tu, X. T. Chen, Y. F. Yuan, Y. Li, X. B. Zhao, G. S. Cao, J. Power Sources 2006, 159, 291; b) P. Yue, Z. Wang, W. Peng, L. Li, H. Guo, X. Li, Q. Hu, Y. Zhang, Scr. Mater. 2011, 65, 1077; c) P. Yue, Z. Wang, W. Peng, L. Li, W. Chen, H. Guo, X. Li, Powder Technol. 2011, 214, 279.
- 16a) Y. Zhang, K. Du, Y. Cao, Y. Lu, Z. Peng, J. Fan, L. Li, Z. Xue, H. Su, G. Hu, J. Power Sources 2020, 477, 228701; b) W.-H. Ryu, S.-J. Lim, W.-K. Kim, H.-S. Kwon, J. Power Sources 2014, 257, 186.
- 17a) K. K. Cheralathan, N. Y. Kang, H. S. Park, Y. J. Lee, W. C. Choi, Y. S. Ko, Y.-K. Park, J. Power Sources 2010, 195, 1486; b) K. S. Lee, S. T. Myung, J. S. Moon, Y. K. Sun, Electrochim. Acta 2008, 53, 6033; c) M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun, Electrochim. Acta 2004, 50, 939.
- 18a) K. J. Kim, Y. N. Jo, W. J. Lee, T. Subburaj, K. Prasanna, C. W. Lee, J. Power Sources 2014, 268, 349; b) H. Jia, W. Zhu, Z. Xu, X. Nie, T. Liu, L. Gao, J. Zhao, Electrochim. Acta 2018, 266, 7.
- 19Y. Shen, Y. Wu, H. Xue, S. Wang, D. Yin, L. Wang, Y. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 717.
- 20Y. Yang, S. Xu, M. Xie, Y. He, G. Huang, Y. Yang, J. Alloys Compd. 2015, 619, 846.
- 21M. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski, J. Janek, Angew. Chem., Int. Ed. 2019, 58, 10434.
- 22a) S. Zhou, T. Mei, X. Wang, Y. Qian, Nanoscale 2018, 10, 17435; b) Y. Su, G. Chen, L. Chen, W. Li, Q. Zhang, Z. Yang, Y. Lu, L. Bao, J. Tan, R. Chen, S. Chen, F. Wu, ACS Appl. Mater. Interfaces 2018, 10, 6407.
- 23F. Fu, G.-L. Xu, Q. Wang, Y.-P. Deng, X. Li, J.-T. Li, L. Huang, S.-G. Sun, J. Mater. Chem. A 2013, 1, 3860.
- 24A. J. Mahajan, D. J. Kirwan, J. Phys. D: Appl. Phys. 1993, 26, B176.
- 25F. Cheng, Y. Xin, J. Chen, L. Lu, X. Zhang, H. Zhou, J. Mater. Chem. A 2013, 1, 5301.
- 26J. Duan, C. Wu, Y. Cao, D. Huang, K. Du, Z. Peng, G. Hu, J. Alloys Compd. 2017, 695, 91.
- 27a) F. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, W.-K. Lee, Y. Yao, J. Deng, T. Liu, Y. Tang, G. Yin, J. Lu, D. Su, J. Wang, Nat. Commun. 2020, 11, 3050; b) M. Ge, S. Wi, X. Liu, J. Bai, S. Ehrlich, D. Lu, W.-K. Lee, Z. Chen, F. Wang, Angew. Chem., Int. Ed. 2021, 60, 17350; c) Y. Wang, E. Wang, X. Zhang, H. Yu, Energy Fuels 2021, 35, 1918.
- 28N. Wu, Y. Zhang, Y. Guo, S. Liu, H. Liu, H. Wu, ACS Appl. Mater. Interfaces 2016, 8, 2723.
- 29J. Ying, C. Wan, C. Jiang, Y. Li, J. Power Sources 2001, 99, 78.
- 30P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 2019, 123, 3291.
- 31Z. Feng, P. Barai, J. Gim, K. Yuan, Y. A. Wu, Y. Xie, Y. Liu, V. Srinivasan, J. Electrochem. Soc. 2018, 165, A3077.
- 32S. Bhattacharjee, M. Elimelech, M. Borkovec, Croat. Chem. Acta 1998, 71, 883.
- 33H. Kim, Y. Kim, Ceram. Int. 2020, 46, 19476.
- 34Q.-P. Mayra, W.-S. Kim, Cryst. Growth Des. 2015, 15, 1726.
- 35H. Dong, G. M. Koenig Jr, J. Mater. Chem. A 2017, 5, 13785.
- 36a) A. van Bommel, J. R. Dahn, Chem. Mater. 2009, 21, 1500; b) J. Cho, Chem. Mater. 2000, 12, 3089.
- 37a) Y. Ding, D. Mu, B. Wu, Z. Zhao, R. Wang, Ceram. Int. 2020, 46, 9436; b) L. Liang, K. Du, Z. Peng, Y. Cao, J. Duan, J. Jiang, G. Hu, Electrochim. Acta 2014, 130, 82; c) M. Noh, J. Cho, J. Electrochem. Soc. 2013, 160, A105.
- 38a) Y. Kim, D. Kim, ACS Appl. Mater. Interfaces 2012, 4, 586; b) K. He, Z. Ruan, X. Teng, Y. Zhu, Mater. Res. Bull. 2017, 90, 131.
- 39J. C. Masy, M. Cournil, Chem. Eng. Sci. 1991, 46, 693.
- 40D. K. Thai, Q.-P. Mayra, W.-S. Kim, Powder Technol. 2015, 274, 5.
- 41Q. Zhu, H. Xiao, R. Zhang, S. Geng, Q. Huang, Electrochim. Acta 2019, 318, 1.
- 42S. Lee, C.-H. Lee, W.-S. Kim, J. Cryst. Growth 2013, 373, 32.
- 43a) A. Ochieng, M. S. Onyango, A. Kumar, K. Kiriamiti, P. Musonge, Chem. Eng. Process. 2008, 47, 842; b) Q. Zhu, H. Xiao, A. Chen, S. Geng, Q. Huang, Chin. J. Chem. Eng. 2019, 27, 993.
- 44a) L. Cheng, B. Zhang, S.-L. Su, L. Ming, Y. Zhao, X.-X. Tan, J. Solid State Chem. 2021, 297, 122045; b) Q. Zhang, Y. Su, L. Chen, Y. Lu, L. Bao, T. He, J. Wang, R. Chen, J. Tan, F. Wu, J. Power Sources 2018, 396, 734; c) H. Zhou, F. Zhou, Y. Liu, J. Kong, C. Jin, X. Wu, J. Alloys Compd. 2020, 816, 152563.
- 45a) B. Huang, X. Li, Z. Wang, H. Guo, L. Shen, J. Wang, J. Power Sources 2014, 252, 200; b) B. Huang, X. Li, Z. Wang, H. Guo, Z. He, R. Wang, J. Wang, X. Xiong, Mater. Lett. 2014, 115, 49.
- 46a) Y.-K. Sun, S. T. Myung, H.-S. Shin, Y. S. Bae, C. S. Yoon, J. Phys. Chem. B 2006, 110, 6810; b) Y. K. Sun, S. T. Myung, B. C. Park, K. Amine, Chem. Mater. 2006, 18, 5159; c) Y. K. Sun, S. T. Myung, M.-H. Kim, J. Prakash, K. Amine, J. Am. Chem. Soc. 2005, 127, 13411.
- 47a) H.-J. Noh, S.-T. Myung, H.-G. Jung, H. Yashiro, K. Amine, Y.-K. Sun, Adv. Funct. Mater. 2013, 23, 1028; b) Y.-K. Sun, B.-R. Lee, H.-J. Noh, H. Wu, S.-T. Myung, K. Amine, J. Mater. Chem. 2011, 21, 10108; c) G. M. Koenig, I. Belharouak, H. Deng, Y.-K. Sun, K. Amine, Chem. Mater. 2011, 23, 1954; d) Y.-K. Sun, D.-H. Kim, C. S. Yoon, S.-T. Myung, J. Prakash, K. Amine, Adv. Funct. Mater. 2010, 20, 485; e) Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, B. Ilias, K. Amine, Nat. Mater. 2009, 8, 320.
- 48a) Y.-M. Choi, S.-I. Pyun, S.-I. Moon, Solid State Ionics 1996, 89, 43; b) J. Zheng, Y. Ye, T. Liu, Y. Xiao, C. Wang, F. Wang, F. Pan, Acc. Chem. Res. 2019, 52, 2201; c) G. Sun, X. Yin, W. Yang, A. Song, C. Jia, W. Yang, Q. Du, Z. Ma, G. Shao, Phys. Chem. Chem. Phys. 2017, 19, 29886.
- 49C. Zhang, M. Liu, G. Pan, S. Liu, D. Liu, C. Chen, J. Su, T. Huang, A. Yu, ACS Appl. Energy Mater. 2018, 1, 4374.
- 50a) K.-J. Park, H.-G. Jung, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, Y.-K. Sun, Adv. Energy Mater. 2018, 8, 1801202; b) P. Oh, J. Yun, S. Park, G. Nam, M. Liu, J. Cho, Adv. Energy Mater. 2021, 11, 2003197; c) L. Zou, J. Li, Z. Liu, G. Wang, A. Manthiram, C. Wang, Nat. Commun. 2019, 10, 3447.
- 51a) J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 2020, 10, 2002027; b) D. Kitsche, S. Schweidler, A. Mazilkin, H. Geßwein, F. Fauth, E. Suard, P. Hartmann, T. Brezesinski, J. Janek, M. Bianchini, Mater. Adv. 2020, 1, 639.
- 52a) H. Yu, H. Zhu, Z. Yang, M. Liu, H. Jiang, C. Li, Chem. Eng. J. 2021, 412, 128625; b) L. Luo, D. Wang, Z. Zhou, P. Dong, S. Yang, J. Duan, Y. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 45068; c) B. Chu, L. You, G. Li, T. Huang, A. Yu, ACS Appl. Mater. Interfaces 2021, 13, 7308; d) U.-H. Kim, N.-Y. Park, G.-T. Park, H. Kim, C. S. Yoon, Y.-K. Sun, Energy Storage Mater. 2020, 33, 399; e) M. Jeong, H. Kim, W. Lee, S.-J. Ahn, E. Lee, W.-S. Yoon, J. Power Sources 2020, 474, 228592; f) G. Shang, Y. Tang, Y. Lai, J. Wu, X. Yang, H. Li, C. Peng, J. Zheng, Z. Zhang, J. Power Sources 2019, 423, 246.
- 53a) C. Zhang, J. Wan, Y. Li, S. Zheng, K. Zhou, D. Wang, D. Wang, C. Hong, Z. Gong, Y. Yang, J. Mater. Chem. A 2020, 8, 6893; b) H.-H. Ryu, G.-T. Park, C. S. Yoon, Y.-K. Sun, J. Mater. Chem. A 2019, 7, 18580; c) Q. Liu, K. Du, H. Guo, Z.-d. Peng, Y.-b. Cao, G.-r. Hu, Electrochim. Acta 2013, 90, 350.
- 54a) W. Cho, Y. J. Lim, S.-M. Lee, J. H. Kim, J.-H. Song, J.-S. Yu, Y.-J. Kim, M.-S. Park, ACS Appl. Mater. Interfaces 2018, 10, 38915; b) L. Tian, H. Yuan, Q. Shao, S. D. A. Zaidi, C. Wang, J. Chen, Ionics 2020, 26, 4937.
- 55a) L. Qiu, M. Zhang, Y. Ming, Y. Song, C. Xu, Z. Wu, Q. Xu, T. Chen, G. Wang, Y. Liu, F. He, J. Zhang, H. Yan, B. Zhang, W. Xiang, X.-D. Guo, E. Yang, Chem. Eng. Sci. 2021, 233, 116337; b) C. Xu, W. Yang, W. Xiang, Z. Wu, Y. Song, G. Wang, Y. Liu, H. Yan, B. Zhang, B. Zhong, X. Guo, Ind. Eng. Chem. Res. 2020, 59, 22549.
- 56a) S.-J. Sim, S.-H. Lee, B.-S. Jin, H.-S. Kim, J. Power Sources 2021, 481, 229037; b) B. Huang, G. Li, Z. Pan, X. Su, L. An, J. Alloys Compd. 2019, 773, 519; c) S. Zhao, Y. Zhu, Y. Qian, N. Wang, M. Zhao, J. Yao, Y. Xu, Mater. Lett. 2020, 265, 127418; d) D. Weber, Đ. Tripković, K. Kretschmer, M. Bianchini, T. Brezesinski, Eur. J. Inorg. Chem. 2020, 2020, 3117.
- 57a) Y.-S. Lee, D. Ahn, Y.-H. Cho, T. E. Hong, J. Cho, J. Electrochem. Soc. 2011, 158, A1354; b) L. Tang, G. Li, P. Xiao, X. Chen, W. Yang, RSC Adv. 2019, 9, 9079; c) A. L. Lipson, B. J. Ross, J. L. Durham, D. Liu, M. LeResche, T. T. Fister, L. Liu, K. Kim, ACS Appl. Energy Mater. 2021, 4, 1972; d) J. S. Lee, Y. J. Park, ACS Appl. Mater. Interfaces 2021, 13, 38333; e) Y. Cho, Y.-S. Lee, S.-A. Park, Y. Lee, J. Cho, Electrochim. Acta 2010, 56, 333.
- 58a) X. Lu, X. Li, Z. Wang, H. Guo, G. Yan, X. Yin, Appl. Surf. Sci. 2014, 297, 182; b) G. Li, L. Qi, P. Xiao, Y. Yu, X. Chen, W. Yang, Electrochim. Acta 2018, 270, 319; c) Y.-C. Li, W. Xiang, Y. Xiao, Z.-G. Wu, C.-L. Xu, W. Xu, Y.-D. Xu, C. Wu, Z.-G. Yang, X.-D. Guo, J. Power Sources 2019, 423, 144.
- 59a) Y. Liu, H. Wu, Y. Wang, K. Li, S. Yin, J. R. Dahn, J. Electrochem. Soc. 2021, 167, 160556; b) R. Tian, J. Su, Z. Ma, D. Song, X. Shi, H. Zhang, C. Li, L. Zhang, Electrochim. Acta 2020, 337, 135769; c) Y. Sun, W. Lv, P. Fu, Y. Song, D. Song, X. Shi, H. Zhang, C. Li, L. Zhang, D. Wang, Chem. Eng. J. 2020, 400, 125821; d) S. Maeng, Y. Chung, S. Min, Y. Shin, J. Power Sources 2020, 448, 227395; e) N. Zhang, N. Zaker, H. Li, A. Liu, J. Inglis, L. Jing, J. Li, Y. Li, G. A. Botton, J. R. Dahn, Chem. Mater. 2019, 31, 10150.
- 60Y. Shin, S. Maeng, Y. Chung, G. K. Krumdick, S. Min, Small 2021, 17, 2100040.