Electronic Structure Regulation of Iron Phthalocyanine Induced by Anchoring on Heteroatom-Doping Carbon Sphere for Efficient Oxygen Reduction Reaction and Al–Air Battery
Yingjian Luo
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYihan Chen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYali Xue
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorJinwei Chen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorGang Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorRuilin Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Miao Yu
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jie Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYingjian Luo
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYihan Chen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYali Xue
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorJinwei Chen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorGang Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorRuilin Wang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Miao Yu
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jie Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Aluminum–air batteries (AABs) are deemed as a potential clean energy storage device. However, exploiting high-efficiency and stable oxygen reduction reaction (ORR) electrocatalysts in AABs is still a challenge. Iron phthalocyanine (FePc) shows a great prospect in ORR but still far from Pt-based catalysts. Here, the hybrid electrocatalysts of monolayer FePc and hollow N,S-doped carbon spheres (HNSCs) are innovatively constructed through π–π stacking to achieve high dispersion. The resulting FePc@HNSC catalyst exhibits an outstanding ORR activity, outperforming that of pristine FePc and even most Fe-based catalysts reported to date. Moreover, the AAB using FePc@HNSC catalyst not only demonstrates a superior power density than the battery with Pt/C, but also displays stable discharge voltages and excellent durability. Furthermore, the theoretical calculations confirm that the charge distribution and d-band center of the Fe atom in FePc are efficiently optimized by hybrid configuration via the introduction of N,S-doped carbon substrate. The design leads to an enriched electron density around Fe active sites and significant reduction of energy barrier for OH* formation, which are favorable for the improvement of electrocatalytic ORR performance. This work provides a chance to expand the application of metallic macrocyclic compound electrocatalysts in various energy technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105594-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2016, 2, 16080.
- 2J. Yu, B.-Q. Li, C.-X. Zhao, Q. Zhang, Energy Environ. Sci. 2020, 13, 3253.
- 3E. J. Rudd, D. W. Gibbons, J. Power Sources 1994, 1, 205.
- 4X. Fu, G. Jiang, G. Wen, R. Gao, S. Li, M. Li, J. Zhu, Y. Zheng, Z. Li, Y. Hu, L. Yang, Z. Bai, A. Yu, Z. Chen, Appl. Catal., B 2021, 293, 120176.
- 5G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters, J.-F. Drillet, S. Passerini, R. Hahn, Adv. Mater. 2016, 28, 7564.
- 6J. Ryu, M. Park, J. Cho, Adv. Mater. 2019, 31, 1804784.
- 7L. Huang, W. Zang, Y. Ma, C. Zhu, D. Cai, H. Chen, J. Zhang, H. Yu, Q. Zou, L. Wu, C. Guan, Chem. Eng. J. 2021, 421, 129973.
- 8C. Tang, H. F. Wang, Q. Zhang, Acc. Chem. Res. 2018, 51, 881.
- 9C. Du, Y. Gao, H. Chen, P. Li, S. Zhu, J. Wang, Q. He, W. Chen, J. Mater. Chem. A 2020, 8, 16994.
- 10A. Zadick, L. Dubau, M. Chatenet, U. Demirci, A. Serov, P. Atanassov, ECS Trans. 2015, 69, 553.
- 11Z. Zhang, M. Dou, J. Ji, F. Wang, Nano Energy 2017, 34, 338.
- 12R. Jasinski, Nature 1964, 201, 1212.
- 13A. Kumar, Y. Zhang, W. Liu, X. Sun, Coord. Chem. Rev. 2020, 402, 213047.
- 14A. Kumar, G. Yasin, R. M. Korai, Y. Slimani, M. F. Ali, M. Tabish, M. Tariq Nazir, T. A. Nguyen, Inorg. Chem. Commun. 2020, 120, 108160.
- 15Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, W. Chen, ACS Catal. 2013, 3, 1263.
- 16X. Yan, X. Xu, Q. Liu, J. Guo, L. Kang, J. Yao, J. Power Sources 2018, 389, 260.
- 17X. Yu, S. Lai, S. Xin, S. Chen, X. Zhang, X. She, T. Zhan, X. Zhao, D. Yang, Appl. Catal., B 2021, 280, 119437.
- 18H. Zhang, S. Zhang, Y. Wang, J. Si, Y. Chen, L. Zhuang, S. Chen, ACS Appl. Mater. Interfaces 2018, 10, 28664.
- 19A. Valverde-Gonzalez, L. Z. Guan, M. L. Ferrer, M. Iglesias, E. M Maya, ACS Appl. Mater. Interfaces 2020, 12, 32681.
- 20Y. Zou, G. Chang, Y. Jia, R. Cai, S. Chen, Y. Xia, W. Theis, D. Yang, X. Yao, Energy Storage Mater. 2018, 15, 202.
- 21Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254.
- 22Y. Lin, K. Liu, K. Chen, Y. Xu, H. Li, J. Hu, Y.-R. Lu, T.-S. Chan, X. Qiu, J. Fu, M. Liu, ACS Catal. 2021, 11, 6304.
- 23D. Qi, Y. Liu, M. Hu, X. Peng, Y. Qiu, S. Zhang, W. Liu, H. Li, G. Hu, L. Zhuo, Y. Qin, J. He, G. Qi, J. Sun, J. Luo, X. Liu, Small 2020, 16, 2004855.
- 24Y.-J. Chen, R. Gao, S.-F. Ji, H.-J. Li, K. Tang, P. Jiang, H.-B. Hu, Z.-D. Zhang, H.-G. Hao, Q.-Y. Qu, X. Liang, W.-X. Chen, J.-C. Dong, D.-S. Wang, Y. D. Li, Angew. Chem., Int. Ed. 2021, 60, 3212.
- 25Y. Ma, J. Li, X. Liao, W. Luo, W. Huang, J. Meng, Q. Chen, S. Xi, R. Yu, Y. Zhao, L. Zhou, L. Mai, Adv. Funct. Mater. 2020, 30, 2005000.
- 26X. Liu, W. Zhang, M. Peng, G. Zhai, L. Hu, L. Mao, Chem. Eng. J. 2021, 426, 131353.
- 27S.-Q. Liu, M.-R. Gao, R.-F. Feng, L. Gong, H. Zeng, J.-L. Luo, ACS Catal. 2021, 11, 7604.
- 28J. Guo, X. Yan, Q. Liu, Q. Li, X. Xu, L. Kang, Z. Cao, G. Chai, J. Chen, Y. Wang, J. Yao, Nano Energy 2018, 46, 347.
- 29L. An, B. Huang, Y. Zhang, R. Wang, N. Zhang, T. Dai, P. Xi, C. H. Yan, Angew. Chem., Int. Ed. 2019, 58, 9459.
- 30Y. Jia, X. Xiong, D. Wang, X. Duan, K. Sun, Y. Li, L. Zheng, W. Lin, M. Dong, G. Zhang, W. Liu, X. Sun, Nano-Micro Lett. 2020, 12, 116.
- 31Y. Ma, S. Luo, M. Tian, J. E. Lu, Y. Peng, C. Desmond, Q. Liu, Q. Li, Y. Min, Q. Xu, S. Chen, J. Power Sources 2020, 450, 227659.
- 32J. Yi, L. Zhang, G. Gao, C. Hua, W. Bei, J. Zhou, M. T. Soo, H. Min, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, Adv. Mater. 2017, 29, 1701636.
- 33N. A. Savastenko, K. Anklam, A. Quade, M. Brüser, A. Schmuhl, V. Brüser, Energy Environ. Sci. 2011, 4, 3461.
- 34X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, Nat. Commun. 2017, 8, 14675.
- 35X. Wang, B. Wang, J. Zhong, F. Zhao, H. Na, W. Huang, Z. Min, Nano Res. 2016, 9, 1497.
- 36Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang, X. Gong, X. Sui, A. Yu, L. Zhao, Z. Wang, Z. Chen, Nano Energy 2020, 71, 104592.
- 37K. Tang, C. Yuan, Y. Xiong, H. Hu, M. Wu, Appl. Catal., B 2020, 260, 118209.
- 38D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459.
- 39X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu, F. M. Hassan, D. Su, J. Zhu, L. Yang, Z. Bai, Z. P. Cano, A. Yu, Z. Chen, Adv. Energy Mater. 2019, 9, 1803737.
- 40X. Liu, H. Liu, C. Chen, L. Zou, Y. Li, Q. Zhang, B. Yang, Z. Zou, H. Yang, Nano Res. 2019, 12, 1651.
- 41Q. Yu, S. Lian, J. Li, R. Yu, S. Xi, J. Wu, D. Zhao, L. Mai, L. Zhou, J. Mater. Chem. A 2020, 8, 6076.
- 42J. Luo, K. Wang, X. Hua, W. Wang, J. Li, S. Zhang, S. Chen, Small 2019, 15, 1805325.
- 43Z. Chen, R. Liu, S. Liu, J. Huang, L. Chen, R. Nadimicherla, D. Wu, R. Fu, Chem. Commun. 2020, 56, 12921.
- 44L. Guo, S. Hwang, B. Li, F. Yang, M. Wang, M. Chen, X. Yang, S. G. Karakalos, D. A. Cullen, Z. Feng, G. Wang, G. Wu, H. Xu, ACS Nano 2021, 15, 6886.
- 45Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. C. Cheong, R. J. A. M. Shen, Adv. Mater. 2018, 30, 1800588.
- 46D. Zhou, Y. Jia, H. Yang, W. Xu, K. Sun, J. Zhang, S. Wang, Y. Kuang, B. Liu, X. Sun, J. Mater. Chem. A 2018, 6, 21162.
- 47G. Chen, Z. Zhuo, K. Ni, N. Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, X. Wu, R. S. Ruoff, Y. Zhu, Small 2015, 11, 5296.
- 48Z. Li, Z. Zhuang, Z. Fan, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, Adv. Mater. 2018, 30, 1803220.
- 49W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao, X. Xue, X. Liu, W. Bai, K. Wang, Q. Xu, J. Zhang, Appl. Catal., B 2020, 260, 118198.
- 50Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219.
- 51X. Wei, X. Luo, H. Wang, W. Gu, W. Cai, Y. Lin, C. Zhu, Appl. Catal., B 2020, 263, 118347.
- 52C. Wang, W. Chen, K. Xia, N. Xie, H. Wang, Y. Zhang, Small 2019, 15, 1804966.
- 53L. Cui, M. Chen, G. Huo, X.-Z. Fu, J.-L. Luo, Chem. Eng. J. 2020, 395, 125158.
- 54K. Fu, Y. Wang, L. Mao, X. Yang, W. Peng, J. Jin, S. Yang, G. Li, J. Power Sources 2019, 421, 68.
- 55Z. Zhao, L. Castanheira, L. Dubau, G. Berthomé, A. Crisci, F. Maillard, J. Power Sources 2013, 230, 236.
- 56M. Jiang, C. Fu, R. Cheng, T. Liu, M. Guo, P. Meng, J. Zhang, B. Sun, Chem. Eng. J. 2021, 404, 127124.