Millefeuille-Inspired Thermal Interface Materials based on Double Self-Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding
Yueyang Gao
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDi Bao
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318 China
Search for more papers by this authorMinghang Zhang
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorYexiang Cui
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorFei Xu
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorXiaosong Shen
Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanji Zhu
Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Huaiyuan Wang
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
E-mail: [email protected]
Search for more papers by this authorYueyang Gao
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDi Bao
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318 China
Search for more papers by this authorMinghang Zhang
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorYexiang Cui
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorFei Xu
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorXiaosong Shen
Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanji Zhu
Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Huaiyuan Wang
State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Owing to the increasing power density of miniaturized and high-frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon-based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large-scale production of such TIMs is restricted by some technical difficulties, such as production-induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self-assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in-plane TC of 233.67 W m−1 K−1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next-generation thermal management systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105567-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
smll202105567-sup-0002-MoiveS1.mp4233.6 KB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang, Z. Luo, N. Yi, D. Zhang, T. Deng, Adv. Mater. 2015, 27, 428.
- 2A. L. Moore, L. Shi, Mater. Today 2014, 17, 163.
- 3M. Qin, Y. Xu, R. Cao, W. Feng, L. Chen, Adv. Funct. Mater. 2018, 28, 1805053.
- 4X. Xie, D. Li, T.-H. Tsai, J. Liu, P. V. Braun, D. G. Cahill, Macromolecules 2016, 49, 972.
- 5P. Zhang, P. Yuan, X. Jiang, S. Zhai, J. Zeng, Y. Xian, H. Qin, D. Yang, Small 2018, 14, 1702769.
- 6F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137.
- 7J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Z. Yu, Adv. Mater. 2017, 29, 1702367.
- 8N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. K. Kim, Adv. Mater. 2014, 26, 5480.
- 9X. Zhang, J. Zhang, X. Zhang, C. Li, J. Wang, H. Li, L. Xia, H. Wu, S. Guo, Compos. Sci. Technol. 2017, 150, 217.
- 10V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, B. A. Cola, Nat. Nanotechnol. 2014, 9, 384.
- 11P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng, W. Wei, Carbon 2016, 99, 222.
- 12W. Dai, J. Yu, Y. Wang, Y. Song, F. E. Alam, K. Nishimura, C.-T. Lin, N. Jiang, J. Mater. Chem. A 2015, 3, 4884.
- 13H. Hou, W. Dai, Q. Yan, L. Lv, F. E. Alam, M. Yang, Y. Yao, X. Zeng, J.-B. Xu, J. Yu, N. Jiang, C.-T. Lin, J. Mater. Chem. A 2018, 6, 12091.
- 14C. Cheng, Z. Chen, Z. Huang, C. Zhang, R. Tusiime, J. Zhou, Z. Sun, Y. Liu, M. Yu, H. Zhang, Composites, Part A 2020, 129, 105696.
- 15X. Li, S. Zeng, S. E, L. Liang, Z. Bai, Y. Zhou, B. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 40789.
- 16B. Zhao, S. Wang, C. Zhao, R. Li, S. M. Hamidinejad, Y. Kazemi, C. B. Park, Carbon 2018, 127, 469.
- 17M. A. Faisal Shahzad, Christine B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137.
- 18Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong, J. Gu, Compos. Sci. Technol. 2019, 183, 107833.
- 19A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, A. N. Pasupathy, Nature 2019, 572, 95.
- 20C. Liang, P. Song, H. Qiu, Y. Huangfu, Y. Lu, L. Wang, J. Kong, J. Gu, Composites, Part A 2019, 124, 105512.
- 21J. Ying, X. Tan, L. Lv, X. Wang, J. Gao, Q. Yan, H. Ma, K. Nishimura, H. Li, J. Yu, T. H. Liu, R. Xiang, R. Sun, N. Jiang, C. Wong, S. Maruyama, C. T. Lin, W. Dai, ACS Nano 2021, 15, 12922.
- 22Q. Yan, F. E. Alam, J. Gao, W. Dai, X. Tan, L. Lv, J. Wang, H. Zhang, D. Chen, K. Nishimura, L. Wang, J. Yu, J. Lu, R. Sun, R. Xiang, S. Maruyama, H. Zhang, S. Wu, N. Jiang, C. T. Lin, Adv. Funct. Mater. 2021, 31, 2104062.
- 23W. Dai, L. Lv, T. Ma, X. Wang, J. Ying, Q. Yan, X. Tan, J. Gao, C. Xue, J. Yu, Y. Yao, Q. Wei, R. Sun, Y. Wang, T. H. Liu, T. Chen, R. Xiang, N. Jiang, Q. Xue, C. P. Wong, S. Maruyama, C. T. Lin, Adv. Sci. 2021, 8, 2003734.
- 24J. Gao, Q. Yan, L. Lv, X. Tan, J. Ying, K. Yang, J. Yu, S. Du, Q. Wei, R. Xiang, Y. Yao, X. Zeng, R. Sun, C.-P. Wong, N. Jiang, C.-T. Lin, W. Dai, Chem. Eng. J. 2021, 419, 129609.
- 25Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng, X. Li, M. Zou, A. Cao, R. Ma, Q. Yuan, X. Duan, Science 2019, 364, 1057.
- 26S. Zeng, X. Li, M. Li, J. Zheng, S. E, W. Yang, B. Zhao, X. Guo, R. Zhang, Carbon 2019, 155, 34.
- 27X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Chem. Eng. J. 2020, 380, 122475.
- 28X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Compos. Sci. Technol. 2016, 136, 104.
- 29K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439.
- 30X. Shen, Z. Wang, Y. Wu, X. Liu, Y. B. He, J. K. Kim, Nano Lett. 2016, 16, 3585.
- 31J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, ACS Nano 2010, 4, 5245.
- 32A. L. Cottrill, A. T. Liu, Y. Kunai, V. B. Koman, A. Kaplan, S. G. Mahajan, P. Liu, A. R. Toland, M. S. Strano, Nat. Commun. 2018, 9, 664.
- 33J.-P. Chen, Z.-F. Wang, Z.-L. Yi, L.-J. Xie, Z. Liu, S.-C. Zhang, C.-M. Chen, Chem. Eng. J. 2021, 423, 130181.
- 34S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, T. Deng, R. Wang, Adv. Mater. 2019, 31, 1905099.
- 35A. Celzard, J. Mareche, G. Furdin, Prog. Mater. Sci. 2005, 50, 93.
- 36Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen, Q. Fu, Carbon 2018, 133, 435.
- 37Y. Zhang, J. R. Choi, S.-J. Park, Composites, Part A 2018, 109, 498.
- 38S. Yang, Q. Wang, B. Wen, ACS Appl. Mater. Interfaces 2021, 13, 1511.
- 39X.-H. Li, P. Liu, X. Li, F. An, P. Min, K.-N. Liao, Z.-Z. Yu, Carbon 2018, 140, 624.
- 40S. Yang, X. Sun, J. Shen, Y. Li, L. Xie, S. Qin, B. Xue, Q. Zheng, ACS Sustainable Chem. Eng. 2020, 8, 17639.
- 41H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, ACS Appl. Mater. Interfaces 2015, 7, 5701.
- 42V. K. Thakur, J. Yan, M.-F. Lin, C. Zhi, D. Golberg, Y. Bando, R. Sim, P. S. Lee, Polym. Chem. 2012, 3, 962.
- 43Y. T. Hsieh, J. Y. Chen, S. Fukuta, P. C. Lin, T. Higashihara, C. C. Chueh, W. C. Chen, ACS Appl. Mater. Interfaces 2018, 10, 21712.
- 44J. Zhang, X. Liu, W. Zao, H. Feng, Y. Hou, A. Huo, ACS Appl. Mater. Interfaces 2021, 13, 10376.
- 45X. Hou, Y. Chen, W. Dai, Z. Wang, H. Li, C. T. Lin, K. Nishimura, N. Jiang, J. Yu, Chem. Eng. J. 2019, 375, 121921.
- 46Z. Wu, C. Xu, C. Ma, Z. Liu, H. M. Cheng, W. Ren, Adv. Mater. 2019, 31, 1900199.
- 47C. P. Feng, L. B. Chen, G. L. Tian, S. S. Wan, L. Bai, R. Y. Bao, Z. Y. Liu, M. B. Yang, W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 18739.
- 48H. Hong, Y. H. Jung, J. S. Lee, C. Jeong, J. U. Kim, S. Lee, H. Ryu, H. Kim, Z. Ma, T. I. Kim, Adv. Funct. Mater. 2019, 29, 1902575.
- 49H. Jiang, Z. Wang, H. Geng, X. Song, H. Zeng, C. Zhi, ACS Appl. Mater. Interfaces 2017, 9, 10078.
- 50J. Li, F. Li, X. Zhao, W. Zhang, S. Li, Y. Lu, L. Zhang, ACS Appl. Electron. Mater. 2020, 2, 1661.
- 51K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, K. Hata, Adv. Mater. 2014, 26, 5857.
- 52Y. Wang, X. Zhang, X. Ding, Y. Li, P. Zhang, M. Shu, Q. Zhang, Y. Gong, K. Zheng, B. Wu, X. Tian, Compos. Sci. Technol. 2021, 205, 108693.
- 53K. Wu, J. Wang, D. Liu, C. Lei, D. Liu, W. Lei, Q. Fu, Adv. Mater. 2020, 32, 1906939.
- 54Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv, J. Ying, X. Lu, J. Lu, Y. Yao, Q. Wei, R. Sun, J. Yu, N. Jiang, D. Chen, C. P. Wong, R. Xiang, S. Maruyama, C. T. Lin, ACS Nano 2021, 15, 6489.
- 55X. Zeng, L. Ye, S. Yu, H. Li, R. Sun, J. Xu, C. P. Wong, Nanoscale 2015, 7, 6774.
- 56M. Foygel, R. D. Morris, D. Anez, S. French, V. L. Sobolev, Phys. Rev. B 2005, 71, 104201.
- 57G. Pan, Y. Yao, X. Zeng, J. Sun, J. Hu, R. Sun, J. B. Xu, C. P. Wong, ACS Appl. Mater. Interfaces 2017, 9, 33001.
- 58X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C. P. Wong, Small 2015, 11, 6205.
- 59B. Wei, L. Zhang, S. Yang, Chem. Eng. J. 2021, 404, 126437.
- 60H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 2016, 59, 41.
- 61S. Park, H. Choi, Y. Cho, J. Jeong, J. Sun, S. Cha, M. Choi, J. Bae, J. J. Park, ACS Appl. Mater. Interfaces 2021, 13, 22926.
- 62N. Gogurla, Y. Kim, S. Cho, J. Kim, S. Kim, Adv. Mater. 2021, 33, 2008308.
- 63S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang, N. Wen, Z. Fan, L. Pan, ACS Appl. Mater. Interfaces 2020, 12, 19874.
- 64Y. Zheng, Y. Li, K. Dai, M. Liu, K. Zhou, G. Zheng, C. Liu, C. Shen, Composites, Part A 2017, 101, 41.
- 65C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, ACS Appl. Mater. Interfaces 2020, 12, 26485.
- 66Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 2020, 14, 8368.
- 67F. Kargar, Z. Barani, M. Balinskiy, A. S. Magana, J. S. Lewis, A. A. Balandin, Adv. Electron. Mater. 2019, 5, 1800558.
- 68Z. Barani, F. Kargar, A. Mohammadzadeh, S. Naghibi, C. Lo, B. Rivera, A. A. Balandin, Adv. Electron. Mater. 2020, 6, 2000520.
- 69Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y. Yashchyshyn, G. Cywinski, S. Rumyantsev, T. T. Salguero, A. A. Balandin, Adv. Mater. 2021, 33, 2007286.
- 70Z. Barani, F. Kargar, Y. Ghafouri, S. Baraghani, S. Sudhindra, A. Mohammadzadeh, T. T. Salguero, A. A. Balandin, ACS Appl. Mater. Interfaces 2021, 13, 21527.
- 71X. X. Wang, J. C. Shu, W. Q. Cao, M. Zhang, J. Yuan, M. S. Cao, Chem. Eng. J. 2019, 369, 1068.
- 72Y.-L. Guo, R.-Z. Zhang, K. Wu, F. Chen, Q. Fu, Chin. J. Polym. Sci. 2017, 35, 1497.
- 73S. H. Lee, S. Yu, F. Shahzad, W. N. Kim, C. Park, S. M. Hong, C. M. Koo, Nanoscale 2017, 9, 13432.
- 74J. Li, S. Qi, M. Zhang, Z. Wang, J. Appl. Polym. Sci. 2015, 132, 42306.
- 75F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao, D. Yan, P. Ren, J. Mater. Chem. C 2018, 6, 1476.
- 76Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Chem. Eng. J. 2019, 360, 817.
- 77J. C. Shu, M. S. Cao, M. Zhang, X. X. Wang, W. Q. Cao, X. Y. Fang, M. Q. Cao, Adv. Funct. Mater. 2020, 30, 1908299.
- 78M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 2018, 14, 1800987.