Biomass-Induced Diphasic Carbon Decoration for Carbon Nitride: Band and Electronic Engineering Targeting Efficient N2 Photofixation
Zheng Tang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorLijun Xiong
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorXiaoyue Zhang
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Jinyou Shen
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAiwu Sun
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, Jiangsu Province, 223001 P. R. China
Search for more papers by this authorXiangyang Lin
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Yong Yang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorZheng Tang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorLijun Xiong
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorXiaoyue Zhang
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Jinyou Shen
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAiwu Sun
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, Jiangsu Province, 223001 P. R. China
Search for more papers by this authorXiangyang Lin
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorCorresponding Author
Yong Yang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Boosting the replacement of traditional NH3 production (Haber–Bosch process) with photocatalytic technology is of great importance for energy and environment remediation. Herein, to develop a photocatalyst with efficient charge separation and abundant reactive sites for photocatalytic N2 fixation, a biomass-induced diphase-carbon doping strategy is proposed by adding lotus root starch which can be environmentally produced into the preparation of carbon nitride (CN). The adjustment to the CN framework by planar-fused carbon optimizes the band alignment of the catalyst, improving its response to sunlight. In particular, the in-plane-fused carbon in collaboration with the physically piled carbon initiates unique dual electron transfer pathways from different dimensions. The diphasic carbons can both function as qualified reactive sites according to the experimental explorations and further theoretical calculations, which effectively regulate the electron transfer and energy barrier associated with the N2 reduction on catalyst. The bio-carbon-doped catalyst exhibits drastically enhanced photocatalytic N2 fixation performance, and the NH3 yield on the optimized DC-CN0.1 reaches 167.35 µmol g−1 h−1, which is fivefold of g-C3N4 and stands far out from the single-phase doped systems. These explorations expand the metal-free skeleton engineering toolbox and provide new guidance for the solar energy utilizations.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202105217-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. Smil, Nature 1999, 400, 415.
- 2G. Ertl, H. Knözinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, Vol. 2, Wiley-VCH, Weinheim, Germany 1997.
10.1002/9783527619474 Google Scholar
- 3K. Honkala, A. Hellman, I. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, J. K. Nørskov, Science 2005, 307, 555.
- 4R. Shi, Y. Zhao, G. I. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 2019, 9, 9739.
- 5M. Rosen, D. Scott, Int. J. Hydrogen Energy 1998, 23, 653.
- 6G. Schrauzer, T. Guth, J. Am. Chem. Soc. 2002, 99, 7189.
- 7Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
- 8H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929.
- 9N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, J. Am. Chem. Soc. 2018, 140, 9434.
- 10S. Sun, Q. An, W. Wang, L. Zhang, J. Liu, W. A. GoddardIII, J. Mater. Chem. A 2017, 5, 201.
- 11T. Hou, Y. Xiao, P. Cui, Y. Huang, X. Tan, X. Zheng, Y. Zou, C. Liu, W. Zhu, S. Liang, Adv. Energy Mater. 2019, 9, 1902319.
- 12H. Xu, Y. Wang, X. Dong, N. Zheng, H. Ma, X. Zhang, Appl. Catal. B 2019, 257, 117932.
- 13S. Sun, X. Li, W. Wang, L. Zhang, X. Sun, Appl. Catal. B 2017, 200, 323.
- 14B. Huang, Y. Liu, Q. Pang, X. Zhang, H. Wang, P. K. Shen, J. Mater. Chem. A 2020, 8, 22251.
- 15J. Luo, X. Bai, Q. Li, X. Yu, C. Li, Z. Wang, W. Wu, Y. Liang, Z. Zhao, H. Liu, Nano Energy 2019, 66, 104187.
- 16P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, J. Am. Chem. Soc. 2020, 142, 12430.
- 17J. Di, J. Xia, M. F. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y. X. Weng, Adv. Mater. 2019, 31, 1807576.
- 18P. Qiu, C. Xu, N. Zhou, H. Chen, F. Jiang, Appl. Catal. B 2018, 221, 27.
- 19S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Chem. Eng. J. 2019, 373, 572.
- 20C. Sun, Z. Chen, J. Cui, K. Li, H. Qu, H. Xie, Q. Zhong, Catal. Sci. Technol. 2021, 11, 1027.
- 21R. Tao, X. Li, X. Li, C. Shao, Y. Liu, Nanoscale 2020, 12, 8320.
- 22H. Mou, J. Wang, D. Yu, D. Zhang, W. Chen, Y. Wang, D. Wang, T. Mu, ACS Appl. Mater. Interfaces 2019, 11, 443605.
- 23W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159.
- 24X. Fei, L. Zhang, J. Yu, B. Zhu, Front. Nanotechnol. 2021, 3, 41.
10.3389/fnano.2021.698351 Google Scholar
- 25W.-J. Ong, K. P. Y. Shak, Sol. RRL 2020, 4, 2000132.
- 26X. Liu, X. Han, Z. Liang, Y. Xue, Y. Zhou, X. Zhang, H. Cui, J. Tian, J. Colloid Interface Sci. 2022, 605, 320.
- 27C. Yao, R. Wang, Z. Wang, H. Lei, X. Dong, C. He, J. Mater. Chem. A 2019, 7, 27547.
- 28S. Zhao, Y. Zhang, Y. Zhou, Y. Wang, K. Qiu, C. Zhang, J. Fang, X. Sheng, Carbon 2018, 126, 247.
- 29T. Xiao, Z. Tang, Y. Yang, L. Tang, Y. Zhou, Z. Zou, Appl. Catal. B 2018, 220, 417.
- 30X. Yu, S.-F. Ng, L. K. Putri, L.-L. Tan, A. R. Mohamed, W.-J. Ong, Small 2021, https://doi.org/10.1002/smll.202006851.
10.1002/smll.202006851 Google Scholar
- 31Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu, L.-Z. Zhang, J.-H. Li, W.-P. Fang, X.-D. Yi, J. Mater. Chem. A 2018, 6, 15310.
- 32L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 2021, 411, 128501.
- 33C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 2019, 31, 1902868.
- 34L. Pei, Y. Yuan, W. Bai, T. Li, H. Zhu, Z. Ma, J. Zhong, S. Yan, Z. Zou, ACS Catal. 2020, 10, 15083.
- 35A. Zhou, Y. Dou, C. Zhao, J. Zhou, X.-Q. Wu, J.-R. Li, Appl. Catal. B 2020, 264, 118519.
- 36J. Wang, Y. Shen, S. Liu, Y. Zhang, Appl. Catal. B 2020, 270, 118885.
- 37H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang, R. Wang, Adv. Funct. Mater. 2020, 30, 2002654.
- 38J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 2015, 347, 970.
- 39Y. Wang, X. Bai, H. Qin, F. Wang, Y. Li, X. Li, S. Kang, Y. Zuo, L. Cui, ACS Appl. Mater. Interfaces 2016, 8, 17212.
- 40B. M. Comer, Y.-H. Liu, M. B. Dixit, K. B. Hatzell, Y. Ye, E. J. Crumlin, M. C. Hatzell, A. J. Medford, J. Am. Chem. Soc. 2018, 140, 15157.
- 41Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Adv. Mater. 2021, 33, 2008180.
- 42P. Li, S. Liu, W. Cao, G. Zhang, X. Yang, X. Gong, X. Xing, Chem. Commun. 2020, 56, 2316.
- 43P. Li, S. Liu, X. Yang, S. Du, W. Tang, W. Cao, J. Zhou, X. Gong, X. Xing, Chem. Eng. J. 2021, 403, 126387.
- 44W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, J. Am. Chem. Soc. 2017, 139, 3021.
- 45Y. Yu, W. Yan, X. Wang, P. Li, W. Gao, H. Zou, S. Wu, K. Ding, Adv. Mater. 2018, 30, 1705060.
- 46G. Zhang, Q. Ji, Z. Wu, G. Wang, H. Liu, J. Qu, J. Li, Adv. Funct. Mater. 2018, 28, 1706462.
- 47L. Ai, R. Shi, J. Yang, K. Zhang, T. Zhang, S. Lu, Small 2021, https://doi.org/10.1002/smll.202007523.
10.1002/smll.202007523 Google Scholar
- 48M. Li, Z. Bi, L. Xie, G. Sun, Z. Liu, Q. Kong, X. Wei, C.-M. Chen, ACS Sustainable Chem. Eng. 2019, 7, 14796.
- 49A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893.
- 50X. Niu, Z. Zhao, K. Jia, X. Li, Food Chem. 2012, 133, 592.
- 51H. Chen, C. Zhao, J. Li, S. Hussain, S. Yan, Q. Wang, LWT–Food Sci. Technol. 2018, 93, 204.
- 52J. Liu, M. Zhang, S. Wang, J. Sci. Food Agric. 2010, 90, 2482.
- 53Y. Yang, Z. Tang, B. Zhou, J. Shen, H. He, A. Ali, Q. Zhong, Y. Xiong, C. Gao, A. Alsaedi, Appl. Catal. B 2020, 264, 118470.
- 54M. A. Mohamed, M. Zain, L. J. Minggu, M. B. Kassim, N. A. S. Amin, W. Salleh, M. N. I. Salehmin, M. F. M. Nasir, Z. A. M. Hir, Appl. Catal. B 2018, 236, 265.
- 55Y. Chen, B. Wang, S. Lin, Y. Zhang, X. Wang, J. Phys. Chem. C 2014, 118, 29981.
- 56G. Lei, Z. Dai, Z. Fan, X. Zheng, Y. Cao, L. Shen, Y. Xiao, C. Au, L. Jiang, Carbon 2019, 155, 204.
- 57G. Zhang, A. Savateev, Y. Zhao, L. Li, M. Antonietti, J. Mater. Chem. A 2017, 5, 12723.
- 58T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
- 59G. Zhou, Y. Shan, Y. Hu, X. Xu, L. Long, J. Zhang, J. Dai, J. Guo, J. Shen, S. Li, Nat. Commun. 2018, 9, 3366.
- 60T.-F. Yeh, S.-J. Chen, C.-S. Yeh, H. Teng, J. Phys. Chem. C 2013, 117, 6516.
- 61Y. Wen, M. Wu, M. Zhang, C. Li, G. Shi, Adv. Mater. 2017, 29, 1702831.
- 62Y. Yang, J. Wu, T. Xiao, Z. Tang, J. Shen, H. Li, Y. Zhou, Z. Zou, Appl. Catal. B 2019, 255, 117771.
- 63Y. Sun, T. Jiang, J. Duan, L. Jiang, X. Hu, H. Zhao, J. Zhu, S. Chen, X. Wang, ACS Catal. 2020, 10, 11371.
- 64Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, Angew. Chem., Int. Ed. 2021, 60, 16085.
- 65L. Li, Y. Yang, L. Yang, X. Wang, Y. Zhou, Z. Zou, ChemNanoMat 2021, 7, 815.
- 66A. Braibanti, F. Dallavalle, M. Pellinghelli, E. Leporati, Inorg. Chem. 1968, 7, 1430.
- 67N. Wiberg, G. Fischer, H. Bachhuber, Angew. Chem., Int. Ed. 1977, 16, 780.
- 68D. Sellmann, A. Brandl, R. Endell, Angew. Chem., Int. Ed. 1973, 12, 1019.
10.1002/anie.197310191 Google Scholar
- 69C. Mao, L. Yu, J. Li, J. Zhao, L. Zhang, Appl. Catal. B 2018, 224, 612.
- 70T. Zhang, R. Qu, W. Su, J. Li, Appl. Catal. B 2015, 176, 338.
- 71J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
- 72J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
- 73M. Segall, P. J. Lindan, M.a. Probert, C. J. Pickard, P. J. Hasnip, S. Clark, M. Payne, J. Phys.: Condens. Matter 2002, 14, 2717.
- 74J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 75A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311.
- 76B. Huang, Y. Wu, B. Chen, Y. Qian, N. Zhou, N. Li, Chin. J. Catal. 2021, 42, 1160.
- 77C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 2018, 140, 14161.