Photoactivated Self-Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Low-Dose Photodynamic Therapy
Jinjin Shi
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDanyu Wang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanrui Ma
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJingwen Liu
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanan Li
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorRashed Reza
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZhenzhong Zhang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Junjie Liu
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Kaixiang Zhang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorJinjin Shi
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDanyu Wang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanrui Ma
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJingwen Liu
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYanan Li
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorRashed Reza
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZhenzhong Zhang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Junjie Liu
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Kaixiang Zhang
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Low-dose photodynamic therapy (PDT) holds great promise for reducing undesired patient photosensitivity in cancer treatment. Yet, its therapeutic effect is significantly affected by intracellular cytoprotective processes, such as autophagy. Here, an efficient autophagy suppressor is developed, which is a multifunctional DNA nanoflower (DNF) consisted of tumor-targeting aptamers and DNAzymes for silencing autophagy-related genes, with surface modification of low-dose photosensitizer (Ce6). It is found that the multifunctional DNF can specifically target tumor cells and generate reactive oxygen species (ROS) under light irradiation to trigger self-disassembly of DNF, enhancing the bioavailability of encoded DNAzymes, leading to amplified autophagy suppression. As a facile spatiotemporally programmable photogene therapy platform, the designed DNF is able to suppress tumor growth in vivo with a very low injection dose of Ce6 (18 µg kg−1, around 100 times lower than the generally applied dose), representing a promising strategy for cancer therapy with safely low-dose PDT.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202104722-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488; b) X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem., Int. Ed. 2018, 57, 11522; c) J. Liu, Y. Zhang, W. Liu, K. Zhang, J. Shi, Z. Zhang, Adv. Healthcare Mater. 2019, 8, 1900791.
- 2a) D. van Straten, V. Mashayekhi, H. S. de Bruijn, S. Oliveira, D. J. Robinson, Cancers 2017, 9, 19; b) J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323.
- 3D. Wang, H. Wu, W. Q. Lim, S. Z. F. Phua, P. Xu, Q. Chen, Z. Guo, Y. Zhao, Adv. Mater. 2019, 31, 1901893.
- 4a) M. F. Wei, M. W. Chen, K. C. Chen, P. J. Lou, S. Y. Lin, S. C. Hung, M. Hsiao, C. J. Yao, M. J. Shieh, Autophagy 2014, 10, 1179; b) J. J. Reiners Jr., P. Agostinis, K. Berg, N. L. Oleinick, D. Kessel, Autophagy 2010, 6, 7.
- 5a) D. Kessel, J. J. Reiners, Autophagy 2020, 16, 2098; b) S. S. Wan, L. Zhang, X. Z. Zhang, ACS Cent. Sci. 2019, 5, 327; c) J. Lin, Z. Huang, H. Wu, W. Zhou, P. Jin, P. Wei, Y. Zhang, F. Zheng, J. Zhang, J. Xu, Y. Hu, Y. Wang, Y. Li, N. Gu, L. Wen, Autophagy 2014, 10, 2006.
- 6a) Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, Q. Zhang, Y. Cheng, Biomaterials 2017, 141, 116; b) X. Wu, Y. Wu, Z. Wang, L. Liu, C. Sun, Y. Chen, C. Wang, Adv. Healthcare Mater. 2018, 7, 1800121; c) X. Ren, Y. Chen, H. Peng, X. Fang, X. Zhang, Q. Chen, X. Wang, W. Yang, X. Sha, ACS Appl. Mater. Interfaces 2018, 10, 27701.
- 7C. E. Dunbar, K. A. High, J. K. Joung, D. B. Kohn, K. Ozawa, M. Sadelain, Science 2018, 359, eaan4672.
- 8a) M. Krohn-Grimberghe, M. J. Mitchell, M. J. Schloss, O. F. Khan, G. Courties, P. P. G. Guimaraes, D. Rohde, S. Cremer, P. S. Kowalski, Y. Sun, M. Tan, J. Webster, K. Wang, Y. Iwamoto, S. P. Schmidt, G. R. Wojtkiewicz, R. Nayar, V. Frodermann, M. Hulsmans, A. Chung, F. F. Hoyer, F. K. Swirski, R. Langer, D. G. Anderson, M. Nahrendorf, Nat. Biomed. Eng. 2020, 4, 1076; b) H. Du Rietz, H. Hedlund, S. Wilhelmson, P. Nordenfelt, A. Wittrup, Nat. Commun. 2020, 11, 1809; c) G. Yamankurt, R. J. Stawicki, D. M. Posadas, J. Q. Nguyen, R. W. Carthew, C. A. Mirkin, Proc. Natl. Acad. Sci. USA 2020, 117, 1312.
- 9K. Zhang, Y. Li, J. Liu, X. Yang, Y. Xu, J. Shi, W. Liu, J. Li, CCS Chem. 2020, 2, 631.
- 10K. Zhang, J. Liu, Q. Song, X. Yang, D. Wang, W. Liu, J. Shi, Z. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 46604.
- 11a) M. Chang, C. S. Yang, D. M. Huang, ACS Nano 2011, 5, 6156; b) J. Zhou, J. Rossi, Nat. Rev. Drug Discovery 2017, 16, 181.
- 12a) H. Wang, Y. Chen, H. Wang, X. Liu, X. Zhou, F. Wang, Angew. Chem., Int. Ed. 2019, 58, 7380; b) H. Fan, Z. Zhao, G. Yan, X. Zhang, C. Yang, H. Meng, Z. Chen, H. Liu, W. Tan, Angew. Chem., Int. Ed. 2015, 54, 4801; c) X. Gong, R. Li, J. Wang, J. Wei, K. Ma, X. Liu, F. Wang, Angew. Chem., Int. Ed. 2020, 59, 21648; d) J. W. Yoo, D. J. Irvine, D. E. Discher, S. Mitragotri, Nat. Rev. Drug Discovery 2011, 10, 521.
- 13a) J. B. Lee, J. Hong, D. K. Bonner, Z. Poon, P. T. Hammond, Nat. Mater. 2012, 11, 316; b) Y. Jin, Z. H. Li, H. F. Liu, S. Z. Chen, F. Wang, L. Wang, N. Li, K. Ge, X. J. Yang, X. J. Liang, J. C. Zhang, NPG Asia Mater. 2017, 9, e365.
- 14a) L. Zhang, R. Abdullah, X. Hu, H. Bai, H. Fan, L. He, H. Liang, J. Zou, Y. Liu, Y. Sun, X. Zhang, W. Tan, J. Am. Chem. Soc. 2019, 141, 4282; b) J. Wang, H. Wang, H. Wang, S. He, R. Li, Z. Deng, X. Liu, F. Wang, ACS Nano 2019, 13, 5852; c) K. Wang, M. You, Y. Chen, D. Han, Z. Zhu, J. Huang, K. Williams, C. J. Yang, W. Tan, Angew. Chem., Int. Ed. 2011, 50, 6098.
- 15a) K. Zhang, R. Deng, Y. Sun, L. Zhang, J. Li, Chem. Sci. 2017, 8, 7098; b) J. Shi, X. Yang, Y. Li, D. Wang, W. Liu, Z. Zhang, J. Liu, K. Zhang, Biomaterials 2020, 256, 120221; c) K. Zhang, H. Gao, R. Deng, J. Li, Angew. Chem., Int. Ed. 2019, 58, 4790.
- 16D. Y. Ouyang, L. H. Xu, X. H. He, Y. T. Zhang, L. H. Zeng, J. Y. Cai, S. Ren, Autophagy 2013, 9, 20.
- 17M. Andrzejak, M. Price, D. H. Kessel, Autophagy 2011, 7, 979.
- 18a) Q. Luo, Y. X. Lin, P. P. Yang, Y. Wang, G. B. Qi, Z. Y. Qiao, B. N. Li, K. Zhang, J. P. Zhang, L. Wang, H. Wang, Nat. Commun. 2018, 9, 1802; b) S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991; c) V. P. Torchilin, Nat. Rev. Drug Discovery 2014, 13, 813.
- 19G. Zhu, R. Hu, Z. Zhao, Z. Chen, X. Zhang, W. Tan, J. Am. Chem. Soc. 2013, 135, 16438.
- 20H. Gao, K. X. Zhang, X. C. Teng, J. H. Li, TrAC, Trends Anal. Chem. 2019, 121, 115700.
- 21M. M. Ali, F. Li, Z. Zhang, K. Zhang, D. K. Kang, J. A. Ankrum, X. C. Le, W. Zhao, Chem. Soc. Rev. 2014, 43, 3324.
- 22H. Wang, X. Yang, W. Shao, S. Chen, J. Xie, X. Zhang, J. Wang, Y. Xie, J. Am. Chem. Soc. 2015, 137, 11376.
- 23D. Jiang, Z. Ge, H.-J. Im, C. G. England, D. Ni, J. Hou, L. Zhang, C. J. Kutyreff, Y. Yan, Y. Liu, S. Y. Cho, J. W. Engle, J. Shi, P. Huang, C. Fan, H. Yan, W. Cai, Nat. Biomed. Eng. 2018, 2, 865.
- 24X. Xue, C. Qian, H. Fang, H. K. Liu, H. Yuan, Z. Guo, Y. Bai, W. He, Angew. Chem., Int. Ed. 2019, 58, 12661.
- 25C. C. Daw, K. Ramachandran, B. Enslow, T. Maity, S. Bursic, B. Novello, M. J. Rubannelsonkumar, C. S. Mashal, A. H. Ravichandran, J. Bakewell, T. M. Wang, W. Li, K. Madaris, T. R. Shannon, C. E. Norton, L. Kandala, S. Caplan, J. Srikantan, S. Stathopulos, P. B. Reeves, W. B. Madesh, Cell 2020, 183, 474.
- 26W. Zhou, J. Ding, J. Liu, Theranostics 2017, 7, 1010.
- 27a) C. Otomo, Z. Metlagel, G. Takaesu, T. Otomo, Nat. Struct. Mol. Biol. 2013, 20, 59; b) S. Rai, M. Arasteh, M. Jefferson, T. Pearson, Y. X. Wang, W. J. Zhang, B. Bicsak, D. Divekar, P. P. Powell, R. Naumann, N. Beraza, S. R. Carding, O. Florey, U. Mayer, T. Wileman, Autophagy 2019, 15, 599.
- 28M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, C. Xu, Adv. Mater. 2016, 28, 898.
- 29H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266.