Octopus-Type Crown-Bisphthalocyaninate Anchor for Bottom-Up Assembly of Supramolecular Bilayers with Expanded Redox-Switching Capability
Corresponding Author
Alexander V. Shokurov
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
E-mail: [email protected]
Search for more papers by this authorAlexey V. Yagodin
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorAlexander G. Martynov
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorYulia G. Gorbunova
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991 Russia
Search for more papers by this authorAslan Yu. Tsivadze
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991 Russia
Search for more papers by this authorSofiya L. Selektor
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorCorresponding Author
Alexander V. Shokurov
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
E-mail: [email protected]
Search for more papers by this authorAlexey V. Yagodin
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorAlexander G. Martynov
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorYulia G. Gorbunova
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991 Russia
Search for more papers by this authorAslan Yu. Tsivadze
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991 Russia
Search for more papers by this authorSofiya L. Selektor
Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia
Search for more papers by this authorAbstract
Achievement of information storage at molecular level remains a pressing task in miniaturization of computing technology. One of the promising approaches for its practical realization is development of nanoscale molecular switching materials including redox-active systems. The present work demonstrates a concept of expansion of a number of available redox-states of self-assembled monolayers through supramolecular approach. For this, the authors synthesized an octopus-like heteroleptic terbium(III) bisphthalocyaninate bearing one ligand with eight thioacetate-terminated “tentacles” (octopus-Pc) and a ligand with four crown-ether moieties (H2[(15C5)4Pc]). It is shown that octopus-Pc forms stable monolayers on gold, where its face-on orientation allows for subsequent binding of crown-phthalocyanine molecules via potassium ion bridges. This chemistry is utilized to form a heterogeneous bilayer, in which a single molecule thick adlayer brings an additional redox-state to the system, thus expanding the multistability of the system as a whole. All four redox states available to this system exhibit characteristic absorbance in visible range, allowing for the switching to be easily read out using optical density measurements. The proposed approach can be used in wide range of switchable materials—single-molecule magnets, conductive, and optical devices, etc.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202104306-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. R. Schaller, IEEE Spectrum 1997, 34, 52.
- 2J. S. Lindsey, D. F. Bocian, Acc. Chem. Res. 2011, 44, 638.
- 3P. Ball, Nature 2000, 406, 118.
- 4J. R. Heath, Annu. Rev. Mater. Res. 2009, 39, 1.
- 5F. M. Raymo, Adv. Mater. 2002, 14, 401.
- 6N. Fuentes, A. Martín-Lasanta, L. Álvarez De Cienfuegos, M. Ribagorda, A. Parra, J. M. Cuerva, Nanoscale 2011, 3, 4003.
- 7E. A. Lukyanets, V. N. Nemykin, J. Porphyrins Phthalocyanines 2010, 14, 1.
- 8A. Kumar, V. Kumar Vashistha, D. Kumar Das, Coord. Chem. Rev. 2021, 431, 213678.
- 9D. Gounden, N. Nombona, W. E. van Zyl, Coord. Chem. Rev. 2020, 420, 213359.
- 10S. Yoshimoto, N. Kobayashi, in Functional Phthalocyanine Molecular Materials (Ed: J. Jiang), Springer, Berlin, 2010, pp. 137–167.
10.1007/978-3-642-04752-7_5 Google Scholar
- 11N. Veling, J. A. A. W. Elemans, R. J. M. Nolte, A. E. Rowan, in Handb. Porphyr. Sci. (Eds: K. M. Kadish, R. Guilard, K. M. Smith), World Scientific Publishing, Singapore 2012, pp. 1–56.
- 12A. L. Eckermann, D. J. Feld, J. A. Shaw, T. J. Meade, Coord. Chem. Rev. 2010, 254, 1769.
- 13J. J. Gooding, S. Ciampi, Chem. Soc. Rev. 2011, 40, 2704.
- 14K.-H. H. Schweikart, V. L. Malinovskii, J. R. Diers, A. A. Yasseri, D. F. Bocian, W. G. Kuhr, J. S. Lindsey, J. Mater. Chem. 2002, 12, 808.
- 15M. Mas-Torrent, C. Rovira, J. Veciana, Adv. Mater. 2013, 25, 462.
- 16B. Bin Cui, J. H. Tang, J. Yao, Y. W. Zhong, Angew. Chem., Int. Ed. 2015, 54, 9192.
- 17M. Urbani, M. E. Ragoussi, M. K. Nazeeruddin, T. Torres, M. Khaja, Coord. Chem. Rev. 2019, 381, 1.
- 18S. Kyatskaya, J. R. Galán Mascarós, L. Bogani, F. Hennrich, M. Kappes, W. Wernsdorfer, M. Ruben, J. Am. Chem. Soc. 2009, 131, 15143.
- 19C. Stefanov, J. van Staden, R.-I. Stefan-van Staden, ECS J. Solid State Sci. Technol. 2020, 9, 051012.
- 20D. O. Oluwole, A. V. Yagodin, N. C. Mkhize, K. E. Sekhosana, A. G. Martynov, Y. G. Gorbunova, A. Y. Tsivadze, T. Nyokong, Chem. - Eur. J. 2017, 23, 2820.
- 21M. Singh, N. Kaur, E. Comini, J. Mater. Chem. C 2020, 8, 3938.
- 22K. A. Zhdanova, N. A. Bragina, A. F. Mironov, Russ. Chem. Bull. 2015, 64, 2294.
- 23J. Jiang, O. Bekaroğlu, Functional Phthalocyanine Molecular Materials, Springer, New York 2010.
- 24B. Agboola, P. Westbroek, K. I. Ozoemena, T. Nyokong, Electrochem. Commun. 2007, 9, 310.
- 25K. I. Ozoemena, T. Nyokong, Microchem. J. 2003, 75, 241.
- 26Z. Li, M. Lieberman, W. Hill, Langmuir 2001, 17, 4887.
- 27B. J. Vesper, K. Salaita, H. Zong, C. A. Mirkin, A. G. M. Barrett, B. M. Hoffman, J. Am. Chem. Soc. 2004, 126, 16653.
- 28V. Huc, J.-P. Bourgoin, C. Bureau, F. Valin, G. Zalczer, S. Palacin, J. Phys. Chem. B 1999, 103, 10489.
- 29B. Tong, H. Yang, W. Xiong, F. Xie, J. Shi, J. Zhi, W. K. Chan, Y. Dong, J. Phys. Chem. B 2013, 117, 5338.
- 30F. Steybe, J. Simon, New J. Chem. 1998, 22, 1305.
- 31K. I. Ozoemena, T. Nyokong, J. Electroanal. Chem. 2005, 579, 283.
- 32S. Zou, R. S. Clegg, F. C. Anson, Langmuir 2002, 18, 3241.
- 33A. V. Shokurov, A. V. Yagodin, A. G. Martynov, Y. G. Gorbunova, S. L. Selektor, ECS J. Solid State Sci. Technol. 2020, 9, 051006.
- 34T. Thami, C. Chassenieux, C. Fretigny, J.-P. P. Roger, F. Steybe, J. Porphyrins Phthalocyanines 2002, 6, 563.
- 35Y. G. Gorbunova, A. G. Martynov, A. Y. Tsivadze, in Handb. Porphyr. Sci. (Eds: K. M. Kadish, K. M. Smith, R. Guilard), World Scientific Publishing, Singapore 2012, pp. 271–388.
- 36A. G. Martynov, Y. G. Gorbunova, A. Y. Tsivadze, Russ. J. Inorg. Chem. 2014, 59, 1635.
- 37O. E. Sielcken, M. M. Van Tilborg, M. F. M. Roks, R. Hendriks, W. Drenth, R. J. M. Nolte, J. Am. Chem. Soc. 1987, 109, 4261.
- 38N. Kobayashi, A. B. P. Lever, J. Am. Chem. Soc. 1987, 109, 7433.
- 39L. A. Lapkina, V. E. Larchenko, G. A. Kirakosyan, A. Y. Tsivadze, S. I. Troyanov, Y. G. Gorbunova, Inorg. Chem. 2018, 57, 82.
- 40A. G. Martynov, M. A. Polovkova, G. S. Berezhnoy, A. A. Sinelshchikova, F. M. Dolgushin, K. P. Birin, G. A. Kirakosyan, Y. G. Gorbunova, A. Y. Tsivadze, Inorg. Chem. 2020, 59, 9424.
- 41L. A. Lapkina, A. A. Sinelshchikova, K. P. Birin, V. E. Larchenko, M. S. Grigoriev, A. Y. Tsivadze, Y. G. Gorbunova, Inorg. Chem. 2021, 60, 1948.
- 42H. Wang, B.-W. Wang, Y. Bian, S. Gao, J. Jiang, Coord. Chem. Rev. 2016, 306, 195.
- 43Y. Horii, S. Kishiue, M. Damjanović, K. Katoh, B. K. Breedlove, M. Enders, M. Yamashita, Chem. - Eur. J. 2018, 24, 4320.
- 44L. Sosa-Vargas, E. Kim, A. J. Attias, Mater. Horiz. 2017, 4, 570.
- 45A. Pedrini, L. Poggini, C. Tudisco, M. Torelli, A. E. Giuffrida, F. Bertani, I. Cimatti, E. Otero, P. Ohresser, P. Sainctavit, M. Suman, G. G. Condorelli, M. Mannini, E. Dalcanale, Small 2018, 14, 1702572.
- 46G. Cucinotta, L. Poggini, A. Pedrini, F. Bertani, N. Cristiani, M. Torelli, P. Graziosi, I. Cimatti, B. Cortigiani, E. Otero, P. Ohresser, P. Sainctavit, A. Dediu, E. Dalcanale, R. Sessoli, M. Mannini, Adv. Funct. Mater. 2017, 27, 1703600.
- 47J. Jiang, D. K. P. Ng, Acc. Chem. Res. 2009, 42, 79.
- 48V. E. Pushkarev, L. G. Tomilova, V. N. Nemykin, Coord. Chem. Rev. 2016, 319, 110.
- 49I. V. Nefedova, Y. G. Gorbunova, S. G. Sakharov, A. Y. Tsivadze, Russ. J. Inorg. Chem. 2005, 50, 165.
- 50D. O. Oluwole, A. V. Yagodin, J. Britton, A. G. Martynov, Y. G. Gorbunova, A. Y. Tsivadze, T. Nyokong, Dalton Trans. 2017, 46, 16190.
- 51A. V. Shokurov, D. S. Kutsybala, A. G. Martynov, O. A. Raitman, V. V. Arslanov, Y. G. Gorbunova, A. Y. Tsivadze, S. L. Selektor, Thin Solid Films 2019, 692, 137591.
- 52M. Arici, C. Bozogˇlu, A. Erdogˇmuş, A. L. Ugˇur, A. Koca, Electrochim. Acta 2013, 113, 668.
- 53T. V. Magdesieva, I. V. Zhukov, L. G. Tomilova, O. V. Korenchenko, I. P. Kalashnikova, K. P. Butin, Russ. Chem. Bull. 2001, 50, 396.
- 54R. Jones, A. Krier, K. Davidson, Thin Solid Films 1997, 298, 228.
- 55S. L. Selector, V. V. Arslanov, Y. G. Gorbunova, O. A. Raitman, L. S. Sheinina, K. P. Birin, A. Y. Tsivadze, J. Porphyrins Phthalocyanines 2008, 12, 1154.
- 56R. Li, X. Zhang, P. Zhu, D. K. P. Ng, N. Kobayashi, J. Jiang, Inorg. Chem. 2006, 45, 2327.
- 57V. V. Arslanov, Y. G. Gorbunova, S. L. Selektor, L. S. Sheinina, O. G. Tselykh, Y. Y. Enakieva, A. Y. Tsivadze, Russ. Chem. Bull. 2004, 53, 2532.
- 58A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, Hoboken, NJ 2001.
- 59C. Beriet, D. Pletcher, J. Electroanal. Chem. 1993, 361, 93.
- 60P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong, B. Zhong, J. Electroanal. Chem. 1999, 464, 61.
- 61J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
- 62C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, J. Am. Chem. Soc. 1989, 111, 321.
- 63N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2018, 95, 197.
- 64D. Martel, N. Sojic, A. Kuhn, J. Chem. Educ. 2002, 79, 349.
- 65A. V. Shokurov, D. S. Kutsybala, A. G. Martynov, A. V. Bakirov, M. A. Shcherbina, S. N. Chvalun, Y. G. Gorbunova, A. Y. Tsivadze, A. V. Zaytseva, D. Novikov, V. V. Arslanov, S. L. Selektor, Langmuir 2020, 36, 1423.
- 66S. L. Selektor, A. V. Shokurov, V. V. Arslanov, Y. G. Gorbunova, K. P. Birin, O. A. Raitman, F. Morote, T. Cohen-Bouhacina, C. Grauby-Heywang, A. Y. Tsivadze, J. Phys. Chem. C 2014, 118, 4250.
- 67A. G. Martynov, O. V. Zubareva, Y. G. Gorbunova, S. G. Sakharov, S. E. Nefedov, F. M. Dolgushin, A. Y. Tsivadze, Eur. J. Inorg. Chem. 2007, 2007, 4800.
- 68Y. Marcus, Rev. Anal. Chem. 2004, 23, 269.
- 69D. Moss, E. Naberdryk, J. Breton, W. Mantele, Eur. J. Biochem. 1990, 187, 565.
- 70M. Richter, K. S. Schellhammer, P. Machata, G. Cuniberti, A. Popov, F. Ortmann, R. Berger, K. Müllen, X. Feng, Org. Chem. Front. 2017, 4, 847.
- 71D. E. Nevonen, G. T. Rohde, V. N. Nemykin, Inorg. Chem. 2019, 58, 14120.
- 72Y. Lan, S. Klyatskaya, M. Ruben, in Lanthanides and Actinides in Molecular Magnetism (Eds: R. A. Layfield, M. Murugesu), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, pp. 223–292.
10.1002/9783527673476.ch8 Google Scholar
- 73M. Yamashita, Bull. Chem. Soc. Jpn. 2021, 94, 209.
- 74A. G. Martynov, Y. G. Gorbunova, S. E. Nefedov, A. Y. Tsivadze, J.-P. Sauvage, Eur. J. Org. Chem. 2012, 2012, 6888.
- 75A. G. Martynov, G. S. Berezhnoy, E. A. Safonova, M. A. Polovkova, Y. G. Gorbunova, A. Y. Tsivadze, Macroheterocycles 2019, 12, 75.
- 76L. M. Fischer, M. Tenje, A. R. Heiskanen, N. Masuda, J. Castillo, A. Bentien, J. Émneus, M. H. Jakobsen, A. Boisen, Microelectron. Eng. 2009, 86, 1282.