SiOx Anode: From Fundamental Mechanism toward Industrial Application
Haoyu Li
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorHaodong Li
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorZhiwei Yang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorLiwen Yang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorJueying Gong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYuxia Liu
The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165 P. R. China
Search for more papers by this authorGongke Wang
School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007 P. R. China
Search for more papers by this authorZhuo Zheng
College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorBenhe Zhong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Yang Song
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYanjun Zhong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorZhenguo Wu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Xiaodong Guo
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorHaoyu Li
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorHaodong Li
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorZhiwei Yang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorLiwen Yang
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorJueying Gong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYuxia Liu
The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165 P. R. China
Search for more papers by this authorGongke Wang
School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007 P. R. China
Search for more papers by this authorZhuo Zheng
College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorBenhe Zhong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Yang Song
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorYanjun Zhong
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorZhenguo Wu
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Xiaodong Guo
School of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Silicon monoxide (SiO) has been explored and confirmed as a promising anode material of lithium-ion batteries. Compared with pure silicon, SiO possesses a more stable microstructure which makes better comprehensive electrochemical properties. However, the lithiation mechanism remains in dispute, and problems such as poor cyclability, unsatisfactory electrical conductivity, and low initial Coulombic efficiency (ICE) need to be addressed. Additionally, more attention needs to be paid on the internal relationship between electrochemical performances and structures. In this review, the different preparation processes, the derived microstructure of the SiOx, the corresponding lithiation mechanism, and electrochemical properties are summarized. Researches about disproportionation reaction which is regarded as a key point and other modifications are systematically introduced. Closely linked with structure, the advantages and disadvantages of various SiOx anode materials are summarized and analyzed, and the possible directions toward the practical applications of SiOx anode material are presented. In a word, from the preparation and reaction mechanism of the material to the modifications and future development, a complete and systematical review on SiOx anode is presented.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; b) J. R. Owen, Chem. Soc. Rev. 1997, 26, 259; c) M. Pasta, C. D. Wessells, R. A. Huggins, Y. Cui, Nat. Commun. 2012, 3, 1149; d) R. F. Service, Science 2014, 344, 352; e) M. S. Whittingham, Chem. Rev. 2004, 104, 4271; f) Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 1997, 276, 1395; g) L. P. Wang, Z. R. Wu, J. Zou, P. Gao, X. B. Niu, H. Li, L. Q. Chen, Joule 2019, 3, 2086; h) R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267; i) Y. R. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. C. Zhang, J. Q. Huang, D. S. Yu, Y. L. Liu, M. M. Titirici, Y. L. Chueh, H. J. Yu, Q. Zhang, Infomat 2019, 1, 6; j) Y. Xiao, P. F. Wang, Y. X. Yin, Y. F. Zhu, Y. B. Niu, X. D. Zhang, J. Zhang, X. Q. Yu, X. D. Guo, B. H. Zhong, Y. G. Guo, Adv. Mater. 2018, 30, 1803765; k) W. B. Hua, M. Z. Chen, B. Schwarz, M. Knapp, M. Bruns, J. Barthel, X. S. Yang, F. Sigel, R. Azmi, A. Senyshyn, A. Missiul, L. Simonelli, M. Etter, S. N. Wang, X. K. Mu, A. Fiedler, J. R. Binder, X. D. Guo, S. L. Chou, B. H. Zhong, S. Indris, H. Ehrenberg, Adv. Energy Mater. 2019, 9, 1803094; l) L. Qiu, W. Xiang, W. Tian, C. L. Xu, Y. C. Li, Z. G. Wu, T. R. Chen, K. Jia, D. Wang, F. R. He, X. D. Guo, Nano Energy 2019, 63, 103818; m) Y. Xiao, Y. F. Zhu, H. R. Yao, P. F. Wang, X. D. Zhang, H. L. Li, X. N. Yang, L. Gu, Y. C. Li, T. Wang, Y. X. Yin, X. D. Guo, B. H. Zhong, Y. G. Guo, Adv. Energy Mater. 2019, 9, 1803978; n) J. Zhu, P. Zhao, S. D. Yang, L. Chen, Q. Zhang, Q. Yan, Fuel 2021, 292, 120263.
- 2a) E. Buiel, J. R. Dahn, J. Electrochem. Soc. 1998, 145, 1977; b) E. Buiel, J. R. Dahn, Electrochim. Acta 1999, 45, 121; c) D. Hirshberg, O. Yariv, G. Gershinsky, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2015, 162, A7001; d) R. Yazami, P. Touzain, J. Power Sources 1983, 9, 365; e) K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 1999, 81, 300.
- 3a) M. Fan, X. Chang, Q. Meng, L. J. Wan, Y.-G. Guo, SusMat 2021, 1, 241; b) C. Geng, W. Hua, D. Wang, G. Ling, C. Zhang, Q. H. Yang, SusMat 2021, 1, 51; c) H. Zhang, Y. Chen, C. Li, M. Armand, SusMat 2021, 1, 24.
- 4a) H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana, W. S. Yoon, Chem. Rev. 2020, 120, 6934; b) Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Chem. Soc. Rev. 2019, 48, 285; c) X. H. Liu, G. L. Feng, Z. G. Wu, Z. G. Yang, S. Yang, X. D. Guo, S. H. Zhang, X. T. Xu, B. H. Zhong, Y. Yamauchi, Chem. Eng. J. 2020, 386, 123953; d) D. Wang, C. G. Shi, Y. P. Deng, Z. G. Wu, Z. G. Yang, Y. J. Zhong, Y. Jiang, B. H. Zhong, L. Huang, X. D. Guo, Z. W. Chen, Nano Energy 2020, 70, 104539; e) Y. Xiao, Y. F. Zhu, W. Xiang, Z. G. Wu, Y. C. Li, J. Lai, S. Li, E. Wang, Z. G. Yang, C. L. Xu, B. H. Zhong, X. D. Guo, Angew. Chem., Int. Ed. 2020, 59, 1491.
- 5a) L. Wang, X. M. He, J. J. Li, W. T. Sun, J. Gao, J. W. Guo, C. Y. Jiang, Angew. Chem., Int. Ed. 2012, 51, 9034; b) C. Z. Zhang, N. Mahmood, H. Yin, F. Liu, Y. L. Hou, Adv. Mater. 2013, 25, 4932.
- 6K. T. Lee, Y. S. Jung, S. M. Oh, J. Am. Chem. Soc. 2003, 125, 5652.
- 7a) W. Luo, P. F. Zhang, X. P. Wang, Q. D. Li, Y. F. Dong, J. C. Hua, L. Zhou, L. Q. Mai, J. Power Sources 2016, 304, 340; b) P. V. Prikhodchenko, J. Gun, S. Sladkevich, A. A. Mikhaylov, O. Lev, Y. Y. Tay, S. K. Batabyal, D. Y. W. Yu, Chem. Mater. 2012, 24, 4750.
- 8a) C. K. Chan, X. F. Zhang, Y. Cui, Nano Lett. 2008, 8, 307; b) S. Choi, Y. G. Cho, J. Kim, N. S. Choi, H. K. Song, G. X. Wang, S. Park, Small 2017, 13, 1603045; c) H. P. Jia, R. Kloepsch, X. He, J. P. Badillo, P. F. Gao, O. Fromm, T. Placke, M. Winter, Chem. Mater. 2014, 26, 5683; d) X. W. Li, Z. B. Yang, Y. J. Fu, L. Qiao, D. Li, H. W. Yue, D. Y. He, ACS Nano 2015, 9, 1858; e) D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 2512; f) Z. W. Yang, T. Chen, D. Q. Chen, X. Y. Shi, S. Yang, Y. J. Zhong, Y. X. Liu, G. K. Wang, B. H. Zhong, Y. Song, Z. G. Wu, X. D. Guo, Angew. Chem., Int. Ed. 2021, 60, 12539.
- 9J. Bai, X. G. Li, G. Z. Liu, Y. T. Qian, S. L. Xiong, Adv. Funct. Mater. 2014, 24, 3012.
- 10a) H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem., Int. Ed. 2008, 47, 10151; b) J. Liu, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Angew. Chem., Int. Ed. 2015, 54, 9632; c) A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 2010, 9, 461; d) M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Lett. 2009, 9, 3844; e) M. Gu, Y. He, J. M. Zheng, C. M. Wang, Nano Energy 2015, 17, 366; f) U. Kasavajjula, C. S. Wang, A. J. Appleby, J. Power Sources 2007, 163, 1003; g) J. R. Szczech, S. Jin, Energy Environ. Sci. 2011, 4, 56.
- 11a) Y. M. Liu, Z. G. Wu, O. Indris, W. B. Hua, N. P. M. Casati, A. Tayal, M. S. D. Darma, G. K. Wang, Y. X. Liu, C. J. Wu, Y. Xiao, B. H. Zhong, X. D. Guo, Nano Energy 2021, 79, 105417; b) L. Qiu, M. K. Zhang, Y. Ming, Y. Song, C. L. Xu, Z. G. Wu, Q. Xu, T. R. Chen, G. K. Wang, Y. X. Liu, F. R. He, J. Zhang, H. Yan, B. Zhang, W. Xiang, X. D. Guo, E. Q. Yang, Chem. Eng. Sci. 2021, 233, 116337; c) C. L. Xu, J. M. Zhao, H. Wang, X. H. Liu, X. Shen, X. H. Rong, Q. Zheng, G. X. Ren, N. A. Zhang, X. S. Liu, X. D. Guo, C. Yang, H. Z. Liu, B. H. Zhong, Y. S. Hu, Adv. Energy Mater. 2021, 11, 2100729; d) Z. Yang, L. Qiu, M. Zhang, Y. Zhong, B. Zhong, Y. Song, G. Wang, Y. Liu, Z. Wu, X. Guo, Chem. Eng. J. 2021, 423, 130127.
- 12a) X. L. Li, M. Gu, S. Y. Hu, R. Kennard, P. F. Yan, X. L. Chen, C. M. Wang, M. J. Sailor, J. G. Zhang, J. Liu, Nat. Commun. 2014, 5, 4105; b) M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966; c) C. M. Wang, X. L. Li, Z. G. Wang, W. Xu, J. Liu, F. Gao, L. Kovarik, J. G. Zhang, J. Howe, D. J. Burton, Z. Y. Liu, X. C. Xiao, S. Thevuthasan, D. R. Baer, Nano Lett. 2012, 12, 1624.
- 13a) T. D. Hatchard, J. R. Dahn, J. Electrochem. Soc. 2004, 151, A838; b) M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett. 2004, 7, A93; c) Y. Shi, J. Wan, J. Y. Li, X. C. Hu, S. Y. Lang, Z. Z. Shen, G. Li, H. J. Yan, K. C. Jiang, Y. G. Guo, R. Wen, L. J. Wan, Nano Energy 2019, 61, 304.
- 14a) J.-H. K. Cheol-Min Park, H. Kim, H.-J. Sohn, Chem. Soc. Rev. 2010, 39, 3115; b) J. Li, J. R. Dahn, Electrochem. Soc. 2007, 154, A156.
- 15C. F. Mabery, J. Franklin Inst. 1886, 122, 271.
10.1016/0016-0032(86)90013-X Google Scholar
- 16G. Hass, J. Am. Ceram. Soc. 1950, 33, 353.
- 17L. Brewer, R. K. Edwards, J. Phys. Chem. 1954, 58, 351.
- 18a) G. W. Brady, J. Phys. Chem. 1959, 63, 1119; b) I. Choi, M. J. Lee, S. M. Oh, J. J. Kim, Electrochim. Acta 2012, 85, 369.
- 19a) H. R. Philipp, J. Phys. Chem. Solids 1971, 32, 1935;
b) H. R. Philipp, J. Non-Cryst. Solids 1972, 8, 627;
10.1016/0022-3093(72)90202-5 Google Scholarc) K. AlKaabi, D. L. V. K. Prasad, P. Kroll, N. W. Ashcroft, R. Hoffmann, J. Am. Chem. Soc. 2014, 136, 3410; d) S. M. Schnurre, J. Grobner, R. Schmid-Fetzer, J. Non-Cryst. Solids 2004, 336, 1.
- 20R. J. Temkin, J. Non-Cryst. Solids 1975, 17, 215.
- 21A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, J. Non-Cryst. Solids 2003, 320, 255.
- 22K. Schulmeister, W. Mader, J. Non-Cryst. Solids 2003, 320, 143.
- 23A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. W. Tan, T. Fujita, M. W. Chen, Nat. Commun. 2016, 7, 11591.
- 24a) J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, O. Yamamoto, Solid State Ionics 2002, 152, 125; b) J. Wang, X. Wang, B. Liu, H. Lu, G. Chu, J. Liu, Y.-G. Guo, X. Yu, F. Luo, Y. Ren, L. Chen, H. Li, Nano Energy 2020, 78, 105101.
- 25Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka, J. Electrochem. Soc. 2004, 151, A1572.
- 26M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem. Soc. 2005, 152, A2089.
- 27T. Kim, S. Park, S. M. Oh, J. Electrochem. Soc. 2007, 154, A1112.
- 28a) B. C. Yu, Y. Hwa, J. H. Kim, H. J. Sohn, Electrochim. Acta 2014, 117, 426; b) B. C. Yu, Y. Hwa, C. M. Park, H. J. Sohn, J. Mater. Chem. A 2013, 1, 4820.
- 29J. K. Lee, W. Y. Yoon, B. K. Kim, J. Electrochem. Soc. 2014, 161, A927.
- 30K. Kitada, O. Pecher, P. C. M. M. Magusin, M. F. Groh, R. S. Weatherup, C. P. Grey, J. Am. Chem. Soc. 2019, 141, 7014.
- 31a) M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185; b) A. Van der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 2013, 46, 1216.
- 32S. C. Jung, H. J. Kim, J. H. Kim, Y. K. Han, J. Phys. Chem. C 2016, 120, 886.
- 33K. Pan, F. Zou, M. Canova, Y. Zhu, J. H. Kim, J. Power Sources 2019, 413, 20.
- 34a) A. Van der Ven, M. K. Aydinol, G. Ceder, J. Electrochem. Soc. 1998, 145, 2149; b) C. P. Grey, N. Dupre, Chem. Rev. 2004, 104, 4493.
- 35a) A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2000, 3, 301; b) A. Van der Ven, G. Ceder, J. Power Sources 2001, 97-98, 529; c) Z. H. Chen, Z. H. Lu, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A1604; d) N. Kuwata, G. Hasegawa, D. Maeda, N. Ishigaki, T. Miyazaki, J. Kawamura, J. Phys. Chem. C 2020, 124, 22981.
- 36a) L. Feng, X. Han, X. R. Su, B. C. Pang, Y. L. Luo, F. Hu, M. J. Zhou, K. Tao, Y. Y. Xia, J. Alloys Compd. 2018, 765, 512; b) D. Park, H. S. Kim, H. Seo, K. Kim, J. H. Kim, Electrochim. Acta 2020, 357, 136862; c) Z. H. Bao, E. M. Ernst, S. Yoo, K. H. Sandhage, Adv. Mater. 2009, 21, 474; d) J. Cho, J. Mater. Chem. 2010, 20, 4009.
- 37a) T. Morita, N. Takami, J. Electrochem. Soc. 2006, 153, A425; b) H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. B. Hu, Y. Cui, Nat. Nanotechnol. 2012, 7, 309; c) Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. A. Liu, L. B. Hu, W. D. Nix, Y. Cui, Nano Lett. 2011, 11, 2949.
- 38Y. Hwa, C. M. Park, H. J. Sohn, J. Power Sources 2013, 222, 129.
- 39a) J. L. Han, G. R. Chen, T. T. Yan, H. J. Liu, L. Y. Shi, Z. X. An, J. P. Zhang, D. S. Zhang, Chem. Eng. J. 2018, 347, 273; b) L. R. Shi, C. L. Pang, S. L. Chen, M. Z. Wang, K. X. Wang, Z. J. Tan, P. Gao, J. G. Ren, Y. Y. Huang, H. L. Peng, Z. F. Liu, Nano Lett. 2017, 17, 3681.
- 40M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, J. Cryst. Growth 2001, 229, 457.
- 41C. M. Park, W. Choi, Y. Hwa, J. H. Kim, G. Jeong, H. J. Sohn, J. Mater. Chem. 2010, 20, 4854.
- 42H. Morimoto, M. Tatsumisago, T. Minami, Electrochem. Solid-State Lett. 2001, 4, A16.
- 43I. A. Courtney, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 2943.
- 44a) A. A. AbdelHamid, Y. Yu, J. H. Yang, J. Y. Ying, Adv. Mater. 2017, 29, 1701427; b) J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao, D. Wang, Nat. Energy 2016, 1, 16050.
- 45L. Carbone, S. G. Greenbaum, J. Hassoun, Sustainable Energy Fuels 2017, 1, 228.
- 46a) J. F. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J. G. Zhang, Nat. Commun. 2015, 6, 6362; b) W. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513; c) Y. Q. Chen, Y. Luo, H. Z. Zhang, C. Qu, H. M. Zhang, X. F. Li, Small Methods 2019, 3, 1800551; d) X. Zhang, Y. A. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.
- 47a) K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nat. Mater. 2014, 13, 69; b) R. Bhattacharyya, B. Key, H. L. Chen, A. S. Best, A. F. Hollenkamp, C. P. Grey, Nat. Mater. 2010, 9, 504; c) G. Bieker, M. Winter, P. Bieker, Phys. Chem. Chem. Phys. 2015, 17, 8670; d) S. Chandrashekar, N. M. Trease, H. J. Chang, L. S. Du, C. P. Grey, A. Jerschow, Nat. Mater. 2012, 11, 311; e) X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
- 48D. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
- 49a) D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochim. Acta 2002, 47, 1423; b) D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 2002, 148, 405; c) S. Q. Shi, P. Lu, Z. Y. Liu, Y. Qi, L. G. Hector, H. Li, S. J. Harris, J. Am. Chem. Soc. 2012, 134, 15476.
- 50a) C. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, M. A. Hendrickson, J. Phys. Chem. C 2010, 114, 9178; b) H. J. Zhao, N. P. Deng, J. Yan, W. M. Kang, J. G. Ju, Y. L. Ruan, X. Q. Wang, X. P. Zhuang, Q. X. Li, B. W. Cheng, Chem. Eng. J. 2018, 347, 343.
- 51I. W. Seong, K. T. Kim, W. Y. Yoon, J. Power Sources 2009, 189, 511.
- 52I. W. Seong, W. Y. Yoon, J. Power Sources 2010, 195, 6143.
- 53S. K. Lee, S. M. Oh, E. Park, B. Scrosati, J. Hassoun, M. S. Park, Y. J. Kim, H. Kim, I. Belharouak, Y. K. Sun, Nano Lett. 2015, 15, 2863.
- 54A. Benitez, D. Di Lecce, G. A. Elia, A. Caballero, J. Morales, J. Hassoun, ChemSusChem 2018, 11, 1512.
- 55D. Q. Chen, W. Zhang, K. Y. Luo, Y. Song, Y. J. Zhong, Y. X. Liu, G. K. Wang, B. H. Zhong, Z. G. Wu, X. D. Guo, Energy Environ. Sci. 2021, 14, 2244.
- 56a) D. C. Lin, Y. Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. T. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626; b) D. C. Lin, J. Zhao, J. Sun, H. B. Yao, Y. Y. Liu, K. Yan, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 4613; c) N. Nitta, F. X. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252; d) Y. Qi, H. B. Guo, L. G. Hector, A. Timmons, J. Electrochem. Soc. 2010, 157, A558.
- 57J. H. Kim, H. J. Sohn, H. Kim, G. Jeong, W. Choi, J. Power Sources 2007, 170, 456.
- 58J. Z. Zhang, J. Zhang, T. Z. Bao, X. H. Xie, B. J. Xia, J. Power Sources 2017, 348, 16.
- 59L. Z. Guo, H. Y. He, Y. R. Ren, C. Wang, M. Q. Li, Chem. Eng. J. 2018, 335, 32.
- 60Z. L. Cao, B. J. Xia, X. H. Xie, J. B. Zhao, Electrochim. Acta 2019, 313, 311.
- 61G. A. Elia, J. Hassoun, ChemElectroChem 2017, 4, 2164.
- 62X. Gao, W. Lu, J. Xu, Nano Energy 2021, 81, 105591.
- 63J. I. Lee, S. Park, Nano Energy 2013, 2, 146.
- 64S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, K. Konno, J. Phys. Chem. C 2011, 115, 13487.
- 65X. J. Feng, J. Yang, X. L. Yu, J. L. Wang, Y. N. Nuli, J. Solid State Electrochem. 2013, 17, 2461.
- 66H. Zhao, Z. H. Wang, P. Lu, M. Jiang, F. F. Shi, X. Y. Song, Z. Y. Zheng, X. Zhou, Y. B. Fu, G. Abdelbast, X. C. Xiao, Z. Liu, V. S. Battaglia, K. Zaghib, G. Liu, Nano Lett. 2014, 14, 6704.
- 67S. Wu, Y. Yang, C. Liu, T. Liu, Y. Zhang, B. Zhang, D. Luo, F. Pan, Z. Lin, ACS Energy Lett. 2020, 6, 290.
- 68a) M. W. Forney, M. J. Ganter, J. W. Staub, R. D. Ridgley, B. J. Landi, Nano Lett. 2013, 13, 4158; b) L. Wang, Y. B. Fu, V. S. Battaglia, G. Liu, RSC Adv. 2013, 3, 15022; c) J. Zhao, Z. D. Lu, N. A. Liu, H. W. Lee, M. T. McDowell, Y. Cui, Nat. Commun. 2014, 5, 5088; d) J. Zhao, Z. D. Lu, H. T. Wang, W. Liu, H. W. Lee, K. Yan, D. Zhuo, D. C. Lin, N. Liu, Y. Cui, J. Am. Chem. Soc. 2015, 137, 8372.
- 69H. Yamamura, S. Nakanishi, H. Iba, J. Power Sources 2013, 232, 264.
- 70Y. Zhang, G. N. Guo, C. Chen, Y. C. Jiao, T. T. Li, X. Chen, Y. C. Yang, D. Yang, A. G. Dong, J. Power Sources 2019, 426, 116.
- 71H. J. Kim, S. Choi, S. J. Lee, M. W. Seo, J. G. Lee, E. Deniz, Y. J. Lee, E. K. Kim, J. W. Choi, Nano Lett. 2016, 16, 282.
- 72Q. Meng, G. Li, J. Yue, Q. Xu, Y.-X. Yin, Y.-G. Guo, ACS Appl. Mater. Interfaces 2019, 11, 32062.
- 73R. S. Fu, Y. K. Wu, C. Z. Fan, Z. X. Long, G. J. Shao, Z. P. Liu, ChemSusChem 2019, 12, 3377.
- 74M. Y. Yan, G. Li, J. Zhang, Y. F. Tian, Y. X. Yin, C. J. Zhang, K. C. Jiang, Q. Xu, H. L. Li, Y. G. Guo, ACS Appl. Mater. Interfaces 2020, 12, 27202.
- 75J. Jang, I. Kang, J. Choi, H. Jeong, K. W. Yi, J. Hong, M. Lee, Angew. Chem., Int. Ed. 2020, 59, 14473.
- 76B. Huang, T. Huang, L. Wan, A. Yu, ACS Sustainable Chem. Eng. 2021, 9, 648.