Nanoarchitectonics of Metal–Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches
Hao Wang
Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Biaohua Chen
Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Di-Jia Liu
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637 USA
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xingtao Xu
JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, 305-0044 Japan
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorLuigi Osmieri
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Search for more papers by this authorCorresponding Author
Yusuke Yamauchi
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072 Australia
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorHao Wang
Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Biaohua Chen
Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Di-Jia Liu
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 USA
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637 USA
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xingtao Xu
JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Ibaraki, 305-0044 Japan
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorLuigi Osmieri
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Search for more papers by this authorCorresponding Author
Yusuke Yamauchi
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072 Australia
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Next-generation desalination technologies are needed to meet the increasing demand for clean water. Capacitive deionization (CDI) is a thermodynamically efficient technique to treat non-potable water with relatively low salinity. The salt removal capacity and rate of CDI are highly dependent on the electrode materials, which are preferentially porous to store ions through electrosorption and/or redox reactions. Metal–organic frameworks (MOFs) with “infinite” combinations of transition metals and organic linkers simplify the production of carbonaceous materials often with redox-active components after pyrolysis. MOFs-derived materials show great tunability in both compositions and structures but require further refinement to improve CDI performance. This review article summarizes recent progress in derivatives of MOFs and MOF-like materials used as CDI electrodes, focusing on the structural and compositional material considerations as well as the processing parameters and electrode architectures of the device. Furthermore, the challenges and opportunities associated with this research area are also discussed.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) C. J. Vörösmarty, P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, P. M. Davies, Nature 2010, 467, 555; b) P. Greve, T. Kahil, J. Mochizuki, T. Schinko, Y. Satoh, P. Burek, G. Fischer, S. Tramberend, R. Burtscher, S. Langan, Y. Wada, Nat. Sustainability 2018, 1, 486.
- 2a) M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, e1500323;
b) M. Kummu, J. H. A. Guillaume, H. de Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T. I. E. Veldkamp, P. J. Ward, Sci. Rep. 2016, 6, 38495;
c) S. Haddout, K. Priya, A. Hoguane, I. Ljubenkov, Sci. Technol. Libr. 2020, 39, 281.
10.1080/0194262X.2020.1765227 Google Scholar
- 3a) Safe Drinking-Water from Desalination, WHO Press, Geneva 2011; b) N. Ghaffour, T. M. Missimer, G. L. Amy, Desalination 2013, 309, 197.
- 4M. A. Al-Obaidi, G. Filippini, F. Manenti, I. M. Mujtaba, Desalination 2019, 456, 136.
- 5R. Zhao, S. Porada, P. M. Biesheuvel, A. van der Wal, Desalination 2013, 330, 35.
- 6J. W. Blair, G. W. Murphy, in Saline Water Conversion, Vol. 27, American Chemical Society, Washington, DC 1960, p. 206.
10.1021/ba-1960-0027.ch020 Google Scholar
- 7a) Y. Oren, Desalination 2008, 228, 10; b) S. Porada, R. Zhao, A. van der Wal, V. Presser, P. M. Biesheuvel, Prog. Mater. Sci. 2013, 58, 1388.
- 8X. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, J. Electroanal. Chem. 2020, 873, 114416.
- 9a) J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination 2006, 196, 125; b) H. Li, L. Zou, Desalination 2011, 275, 62; c) W. Tang, D. He, C. Zhang, P. Kovalsky, T. D. Waite, Water Res. 2017, 120, 229.
- 10J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 2014, 7, 3683.
- 11S. Wang, G. Wang, T. Wu, C. Li, Y. Wang, X. Pan, F. Zhan, Y. Zhang, S. Wang, J. Qiu, Environ. Sci. Technol. 2019, 53, 6292.
- 12E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 2017, 415, 8.
- 13S.-i. Jeon, H.-r. Park, J.-g. Yeo, S. Yang, C. H. Cho, M. H. Han, D. K. Kim, Energy Environ. Sci. 2013, 6, 1471.
- 14C. Zhang, D. He, J. Ma, W. Tang, T. D. Waite, Electrochim. Acta 2019, 299, 727.
- 15T. Kim, J. Yoon, RSC Adv. 2015, 5, 1456.
- 16a) E. García-Quismondo, C. Santos, J. Lado, J. Palma, M. A. Anderson, Environ. Sci. Technol. 2013, 47, 11866; b) Y. Qu, P. G. Campbell, L. Gu, J. M. Knipe, E. Dzenitis, J. G. Santiago, M. Stadermann, Desalination 2016, 400, 18; c) M. A. Ahmed, S. Tewari, J. Electroanal. Chem. 2018, 813, 178; d) V. M. Palakkal, J. E. Rubio, Y. J. Lin, C. G. Arges, ACS Sustainable Chem. Eng. 2018, 6, 13778; e) A. Ramachandran, D. I. Oyarzun, S. A. Hawks, M. Stadermann, J. G. Santiago, Water Res. 2019, 155, 76.
- 17a) Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, RSC Adv. 2015, 5, 15205; b) Z.-H. Huang, Z. Yang, F. Kang, M. Inagaki, J. Mater. Chem. A 2017, 5, 470; c) J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, E. Alhseinat, Sep. Purif. Technol. 2018, 207, 291.
- 18a) C. Zhang, D. He, J. Ma, W. Tang, T. D. Waite, Water Res. 2018, 128, 314; b) F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng, J. Ma, J. Mater. Chem. A 2019, 7, 15999.
- 19a) W. Chaikittisilp, K. Ariga, Y. Yamauchi, J. Mater. Chem. A 2013, 1, 14; b) H. Wang, B.-H. Chen, D.-J. Liu, Adv. Mater. 2021, 33, 2008023.
- 20X. Zhang, X. Wang, W. Fan, D. Sun, Chin. J. Chem. 2020, 38, 509.
- 21P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, O. K. Farha, Chem. Soc. Rev. 2014, 43, 5896.
- 22a) L. Tao, C.-Y. Lin, S. Dou, S. Feng, D. Chen, D. Liu, J. Huo, Z. Xia, S. Wang, Nano Energy 2017, 41, 417; b) Y. Guo, T. Wang, J. Chen, J. Zheng, X. Li, K. Ostrikov, Adv. Energy Mater. 2018, 8, 1800085; c) H. Wang, X. Zhang, F. Yin, W. Chu, B. Chen, J. Mater. Chem. A 2020, 8, 22111; d) H. Wang, F. Yin, N. Liu, H. Yu, T. Fan, B. Chen, ACS Sustainable Chem. Eng. 2021, 9, 4509.
- 23a) H. Wang, F. Yin, G. Li, B. Chen, Z. Wang, Int. J. Hydrogen Energy 2014, 39, 16179; b) X. He, F. Yin, H. Wang, B. Chen, G. Li, Chin. J. Catal. 2018, 39, 207; c) H. Wang, D.-J. Liu, Curr. Opin. Electrochem. 2021, 28, 100724.
- 24a) K. Ariga, V. Malgras, Q. Ji, M. B. Zakaria, Y. Yamauchi, Coord. Chem. Rev. 2016, 320–321, 139; b) A. Azhar, Y. Li, Z. Cai, M. B. Zakaria, M. K. Masud, M. S. A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 2019, 92, 875; c) P. Cheng, C. Wang, Y. V. Kaneti, M. Eguchi, J. Lin, Y. Yamauchi, J. Na, Langmuir 2020, 36, 4231.
- 25a) H. Wang, F. Yin, P. Lv, T. Fan, X. He, B. Chen, Int. J. Hydrogen Energy 2017, 42, 2127; b) H. Wang, F.-X. Yin, N. Liu, R.-H. Kou, X.-B. He, C.-J. Sun, B.-H. Chen, D.-J. Liu, H.-Q. Yin, Adv. Funct. Mater. 2019, 29, 1901531.
- 26a) P. Lin, M. Liao, T. Yang, X. Sheng, Y. Wu, X. Xu, Front. Chem. 2020, 8, 575350; b) J.-z. Weng, S.-y. Wang, P.-x. Zhang, C.-p. Li, G. Wang, New Carbon Mater. 2021, 36, 117.
- 27S. J. Yang, T. Kim, K. Lee, Y. S. Kim, J. Yoon, C. R. Park, Carbon 2014, 71, 294.
- 28Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun, L. Pan, Chem. Commun. 2015, 51, 12020.
- 29L. Chang, J. Li, X. Duan, W. Liu, Electrochim. Acta 2015, 176, 956.
- 30T. Gao, F. Zhou, W. Ma, H. Li, Electrochim. Acta 2018, 263, 85.
- 31Z. Wang, T. Yan, J. Fang, L. Shi, D. Zhang, J. Mater. Chem. A 2016, 4, 10858.
- 32M. Ding, W. Shi, L. Guo, Z. Y. Leong, A. Baji, H. Y. Yang, J. Mater. Chem. A 2017, 5, 6113.
- 33W. Shi, X. Xu, C. Ye, D. Sha, R. Yin, X. Shen, X. Liu, W. Liu, J. Shen, X. Cao, C. Gao, Front. Chem. 2019, 7, 449.
- 34Z. Li, S. Mao, Y. Yang, Z. Sun, R. Zhao, J. Colloid Interface Sci. 2021, 585, 85.
- 35X. Liu, S. Zhang, G. Feng, Z.-G. Wu, D. Wang, M. D. Albaqami, B. Zhong, Y. Chen, X. Guo, X. Xu, Y. Yamauchi, Chem. Mater. 2021, 33, 1657.
- 36K. Wang, Y. Liu, Z. Ding, Y. Li, T. Lu, L. Pan, J. Mater. Chem. A 2019, 7, 12126.
- 37M. Ding, S. Fan, S. Huang, M. E. Pam, L. Guo, Y. Shi, H. Y. Yang, ACS Appl. Energy Mater. 2019, 2, 1812.
- 38S. Yang, M. Luo, Mater. Lett. 2019, 248, 197.
- 39S. I. Park, I. Gocheva, S. Okada, J.-i. Yamaki, J. Electrochem. Soc. 2011, 158, A1067.
- 40M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, L. Pan, Carbon 2016, 108, 433.
- 41Z. Wang, T. Yan, L. Shi, D. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 15068.
- 42J. Shen, Y. Li, C. Wang, R. Luo, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Electrochim. Acta 2018, 273, 34.
- 43H. Wang, L. R. Grabstanowicz, H. M. Barkholtz, D. Rebollar, Z. B. Kaiser, D. Zhao, B.-H. Chen, D.-J. Liu, ACS Energy Lett. 2019, 4, 2500.
- 44H. Wang, L. Edaño, L. Valentino, Y. J. Lin, V. M. Palakkal, D.-L. Hu, B.-H. Chen, D.-J. Liu, Nano Energy 2020, 77, 105304.
- 45J. Zhang, T. Yan, J. Fang, J. Shen, L. Shi, D. Zhang, Environ. Sci. Nano 2020, 7, 926.
- 46X. Xu, M. Wang, Y. Liu, T. Lu, L. Pan, J. Mater. Chem. A 2016, 4, 5467.
- 47N. M. Phuoc, E. Jung, N. A. Tran, Y.-W. Lee, C.-Y. Yoo, B.-G. Kang, Y. Cho, Nanomaterials 2020, 10, 2091.
- 48T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart, Z. Wang, Z. He, G. Liu, Sci. Adv. 2020, 6, eaaz0906.
- 49Y. Liu, J. Ma, T. Lu, L. Pan, Sci. Rep. 2016, 6, 32784.
- 50X. Xu, T. Yang, Q. Zhang, W. Xia, Z. Ding, K. Eid, A. M. Abdullah, M. Shahriar, A. Hossain, S. Zhang, J. Tang, L. Pan, Y. Yamauchi, Chem. Eng. J. 2020, 390, 124493.
- 51Y. Zhao, G. Luo, L. Zhang, L. Gao, D. Zhang, Z. Fan, Electrochim. Acta 2020, 331, 135420.
- 52X. Xu, J. Tang, Y. V. Kaneti, H. Tan, T. Chen, L. Pan, T. Yang, Y. Bando, Y. Yamauchi, Mater. Horiz. 2020, 7, 1404.
- 53M. Ding, K. K. R. Bannuru, Y. Wang, L. Guo, A. Baji, H. Y. Yang, Adv. Mater. Technol. 2018, 3, 1800135.
- 54M. Wang, X. Xu, J. Tang, S. Hou, M. S. A. Hossain, L. Pan, Y. Yamauchi, Chem. Commun. 2017, 53, 10784.
- 55W. Shi, C. Ye, X. Xu, X. Liu, M. Ding, W. Liu, X. Cao, J. Shen, H. Y. Yang, C. Gao, ACS Omega 2018, 3, 8506.
- 56J. Guo, X. Xu, J. P. Hill, L. Wang, J. Dang, Y. Kang, Y. Li, W. Guan, Y. Yamauchi, Chem. Sci. 2021, 12, 10334.
- 57J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, J. Mater. Chem. A 2018, 6, 15245.
- 58H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye, D.-J. Liu, Appl. Catal., B 2017, 205, 55.
- 59J. Kim, J. Kim, J. H. Kim, H. S. Park, Chem. Eng. J. 2020, 382, 122996.
- 60X. Xu, J. Li, M. Wang, Y. Liu, T. Lu, L. Pan, ChemElectroChem 2016, 3, 993.
- 61H. Wang, X. Cheng, F. Yin, B. Chen, T. Fan, X. He, Electrochim. Acta 2017, 232, 114.
- 62a) J. Zhang, C.-Y. Su, Coord. Chem. Rev. 2013, 257, 1373; b) J. Hou, A. F. Sapnik, T. D. Bennett, Chem. Sci. 2020, 11, 310.
- 63Z. Wang, T. Yan, G. Chen, L. Shi, D. Zhang, ACS Sustainable Chem. Eng. 2017, 5, 11637.
- 64X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
- 65Y. Li, X. Xu, S. Hou, J. Ma, T. Lu, J. Wang, Y. Yao, L. Pan, Chem. Commun. 2018, 54, 14009.
- 66L. Ren, J. Zhou, S. Xiong, Y. Wang, Langmuir 2020, 36, 12030.
- 67Y. Li, Z. Ding, X. Zhang, J. Li, X. Liu, T. Lu, Y. Yao, L. Pan, J. Mater. Chem. A 2019, 7, 25305.