Facile and Efficient Fabrication of Branched Si@C Anode with Superior Electrochemical Performance in LIBs
Li Cao
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Ting Huang
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
E-mail: [email protected]
Search for more papers by this authorMengya Cui
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorJiejie Xu
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorRongshi Xiao
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorLi Cao
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Ting Huang
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
E-mail: [email protected]
Search for more papers by this authorMengya Cui
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorJiejie Xu
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorRongshi Xiao
High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorAbstract
One-dimensional Si nanostructures with carbon coating (1D Si@C) show great potential in lithium ion batteries (LIBs) due to small volume expansion and efficient electron transport. However, 1D Si@C anode with large area capacity still suffers from limited cycling stability. Herein, a novel branched Si architecture is fabricated through laser processing and dealloying. The branched Si, composed of both primary and interspaced secondary dendrites with diameters under 100 nm, leads to improved area capacity and cycling stability. By coating a carbon layer, the branched Si@C anode shows gravimetric capacity of 3059 mAh g−1 (1.14 mAh cm−2). At a higher rate of 3 C, the capacity is 813 mAh g−1, which retained 759 mAh g−1 after 1000 cycles at 1 C. The area capacity is further improved to 1.93 mAh cm−2 and remained over 92% after 100 cycles with a mass loading of 0.78 mg cm−2. Furthermore, the full-cell configuration exhibits energy density of 405 Wh kg−1 and capacity retention of 91% after 200 cycles. The present study demonstrates that laser-produced dendritic microstructure plays a critical role in the fabrication of the branched Si and the proposed method provides new insights into the fabrication of Si nanostructures with facility and efficiency.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202005997-sup-0001-SuppMat.pdf464.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Wu, Y. Cui, Nano Today 2012, 7, 414.
- 2K. T. Lee, J. Cho, Nano Today 2011, 6, 28.
- 3X. Su, Q. L. Wu, J. C. Li, X. C. Xiao, A. Lott, W. Q. Lu, B. W. Sheldon, J. Wu, Adv. Energy Mater. 2014, 4, 1300882.
- 4G. L. Hou, B. L. Cheng, Y. J. Yang, Y. Du, Y. H. Zhang, B. Q. Li, J. P. He, Y. Z. Zhou, D. Yi, N. N. Zhao, Y. Bando, D. Golberg, J. N. Yao, X. Wang, F. L. Yuan, ACS Nano 2019, 13, 10179.
- 5L. B. Hu, H. Wu, S. S. Hong, L. F. Cui, J. R. McDonough, S. Bohy, Y. Cui, Chem. Commun. 2011, 47, 367.
- 6Z. R. Zhou, Y. J. Zhang, Y. X. Hua, P. Dong, Y. Lin, M. L. Xu, D. Wang, X. Li, L. N. Han, J. G. Duan, J. Alloys Compd. 2018, 751, 307.
- 7B. Liu, P. Huang, Q. Zhang, Q. Z. Huang, Z. Y. Xie, J. Mater. Sci. 2020, 55, 12165.
- 8K. Stokes, W. Boonen, H. Geaney, T. Kennedy, D. Borsa, K. M. Ryan, ACS Appl. Mater. Interfaces 2019, 11, 19372.
- 9W. L. An, B. Gao, S. X. Mei, B. Xiang, J. J. Fu, L. Wang, Q. B. Zhang, P. K. Chu, K. F. Huo, Nat. Commun. 2019, 10, 1447.
- 10R. Huang, J. Zhu, Mater. Chem. Phys. 2010, 121, 519.
- 11F. Cao, G. X. Pan, J. Chen, Y. J. Zhang, X. H. Xia, J. Power Sources 2016, 303, 35.
- 12J. X. Wang, Q. B. Zhang, X. H. Li, D. G. Xu, Z. X. Wang, H. J. Guo, K. L. Zhang, Nano Energy 2014, 6, 19.
- 13H. Xia, W. Xiong, C. K. Lim, Q. F. Yao, Y. D. Wang, J. P. Xie, Nano Res. 2014, 7, 1797.
- 14S. H. Lee, Y. R. Jo, Y. Noh, B. J. Kim, W. B. Kim, J. Power Sources 2017, 367, 1.
- 15S. F. Wang, D. D. Qu, Y. Jiang, W. S. Xiong, H. Q. Sang, R. X. He, Q. D. Tai, B. L. Chen, Y. M. Liu, X. Z. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 20040.
- 16B. Wang, J. Ryu, S. Choi, X. H. Zhang, D. Pribat, X. L. Li, L. J. Zhi, S. Park, R. S. Ruoff, ACS Nano 2019, 13, 2307.
- 17Y. Z. Zhang, X. H. Sun, N. Nomura, T. Fujita, Small 2019, 15, 1805432.
- 18C. Yang, C. Zhang, L. Liu, J. Mater. Chem. A 2018, 6, 20992.
- 19T. Zhang, Y. Bai, Y. Q. Sun, L. F. Hang, X. Y. Li, D. L. Liu, X. J. Lyu, C. C. Li, W. P. Cai, Y. Li, J. Mater. Chem. A 2018, 6, 13735.
- 20S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1.
- 21J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
- 22T. Huang, L. Cao, X. Zhang, X. Y. Xiong, J. J. Xu, R. S. Xiao, J. Alloys Compd. 2019, 790, 127.
- 23L. Cao, T. Huang, Q. W. Zhang, M. Y. Cui, J. J. Xu, R. S. Xiao, ACS Appl. Mater. Interfaces 2020, 12, 57071.
- 24T. Huang, D. Y. Sun, W. X. Yang, H. L. Wang, Q. Wu, R. S. Xiao, Scr. Mater. 2018, 146, 304.
- 25Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Mueller, R. Schloegl, M. Antonietti, J. Maier, Angew. Chem., Int. Ed. 2008, 47, 1645.
- 26J. Wang, X. C. Meng, X. L. Fan, W. B. Zhang, H. Y. Zhang, C. S. Wang, ACS Nano 2015, 9, 6576.
- 27X. X. Zuo, X. Y. Wang, Y. G. Xia, S. S. Yin, Q. Ji, Z. H. Yang, M. M. Wang, X. F. Zheng, B. Qiu, Z. P. Liu, J. Zhu, P. Mueller-Buschbaum, Y. J. Cheng, J. Power Sources 2019, 412, 93.
- 28X. H. Zhang, D. H. Wang, S. Y. Zhang, X. L. Li, L. J. Zhi, Nanoscale 2019, 11, 21728.
- 29H. Wu, N. Du, H. Zhang, D. Yang, J. Mater. Chem. A 2014, 2, 20510.
- 30J. Qu, H. Q. Li, J. J. Henry, S. K. Martha, N. J. Dudney, H. B. Xu, M. F. Chi, M. J. Lance, S. M. Mahurin, T. M. Besmann, S. Dai, J. Power Sources 2012, 198, 312.
- 31Z. Wei, R. S. Li, T. Huang, A. S. Yu, J. Power Sources 2013, 238, 165.
- 32A. T. Tesfaye, R. Gonzalez, J. L. Coffer, T. Djenizian, ACS Appl. Mater. Interfaces 2015, 7, 20495.
- 33A. Krause, U. Langklotz, D. Pohl, O. Tkacheva, D. Pohl, K. Nielsch, T. Mikolajick, W. M. Weber, J. Energy Storage 2020, 27, 101052.
- 34W. Xiao, J. Zhou, L. Yu, D. H. Wang, X. W. Lou, Angew. Chem., Int. Ed. 2016, 55, 7427.
- 35J. J. Chen, L. J. Bie, J. Sun, F. F. Xu, Mater. Res. Bull. 2016, 73, 394.
- 36H. Tang, X. H. Xia, Y. J. Zhang, Y. Y. Tong, X. L. Wang, C. D. Gu, J. P. Tu, Electrochim. Acta 2015, 180, 1068.
- 37X. Han, Z. Q. Zhang, G. R. Zheng, R. You, J. Y. Wang, C. Li, S. Y. Chen, Y. Yang, ACS Appl. Mater. Interfaces 2019, 11, 714.
- 38L. Deng, Z. Y. Wu, Z. W. Yin, Y. Q. Liu, Z. G. Huang, J. H. You, J. T. Li, L. Huang, S. G. Sun, Electrochim. Acta 2018, 260, 830.
- 39G. T. Kim, T. Kennedy, M. Brandon, H. Geaney, K. M. Ryan, S. Passerini, G. B. Appetecchi, ACS Nano 2017, 11, 5933.
- 40L. Ling, Y. T. Ma, Q. S. Xie, L. S. Wang, Q. F. Zhang, D. L. Peng, ACS Nano 2017, 11, 6893.
- 41H. Zhao, Y. Wei, C. Wang, R. M. Qiao, W. L. Yang, P. B. Messersmith, G. Liu, ACS Appl. Mater. Interfaces 2018, 10, 5440.
- 42S. Basu, S. Suresh, K. Ghatak, S. F. Bartolucci, T. Gupta, P. Hundekar, R. Kumar, T. M. Lu, D. Datta, Y. F. Shi, N. Koratkar, ACS Appl. Mater. Interfaces 2018, 10, 13442.
- 43Z. L. Zhang, Z. L. Wang, X. M. Lu, ACS Nano 2018, 12, 3587.
- 44J. W. Shi, H. Y. Gao, G. X. Hu, Q. Zhang, J. Power Sources 2019, 438, 227001.
- 45M. H. Parekh, V. P. Parikh, P. J. Kim, S. Misra, Z. M. Qi, H. Y. Wang, V. G. Pol, Carbon 2019, 148, 36.
- 46J. Ryu, T. W. Chen, T. Bok, G. Song, J. Ma, C. Hwang, L. L. Luo, H. K. Song, J. Cho, C. M. Wang, S. L. Zhang, S. Park, Nat. Commun. 2018, 9, 2924.
- 47W. S. Kim, Y. Hwa, J. H. Shin, M. Yang, H. J. Sohn, S. H. Hong, Nanoscale 2014, 6, 4297.
- 48F. M. Hassan, A. R. Elsayed, V. Chabot, R. Batmaz, X. C. Xiao, Z. W. Chen, ACS Appl. Mater. Interfaces 2014, 6, 13757.
- 49P. Fan, T. S. Mu, S. F. Lou, X. Q. Cheng, Y. Z. Gao, C. Y. Du, P. J. Zuo, Y. L. Ma, G. P. Yin, Electrochim. Acta 2019, 306, 590.
- 50J. Luo, B. J. Ma, J. Peng, Z. Y. Wu, Z. G. Luo, X. Y. Wang, ACS Sustainable Chem. Eng. 2019, 7, 10415.
- 51Q. Z. Chen, R. L. Zhu, S. H. Liu, D. C. Wu, H. Y. Fu, J. X. Zhu, H. P. He, J. Mater. Chem. A 2018, 6, 6356.
- 52X. Cai, W. Liu, Z. Q. Zhao, S. M. Li, S. Y. Yang, S. S. Zhang, Q. Z. Gao, X. Y. Yu, H. Q. Wang, Y. P. Fang, ACS Appl. Mater. Interfaces 2019, 11, 3897.