Near-Field Nanoscopic Terahertz Imaging of Single Proteins
Zhongbo Yang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorDongyun Tang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorJiao Hu
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorMingjie Tang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorMingkun Zhang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorHong-Liang Cui
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Search for more papers by this authorLihua Wang
Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorChao Chang
Department of Engineering Physics, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorChunhai Fan
School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Jiang Li
Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Huabin Wang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZhongbo Yang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorDongyun Tang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorJiao Hu
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorMingjie Tang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorMingkun Zhang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
Search for more papers by this authorHong-Liang Cui
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Search for more papers by this authorLihua Wang
Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorChao Chang
Department of Engineering Physics, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorChunhai Fan
School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Jiang Li
Bioimaging Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Huabin Wang
Research Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China
Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing, 400714 China
Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Terahertz (THz) biological imaging has attracted intense attention due to its capability of acquiring physicochemical information in a label-free, noninvasive, and nonionizing manner. However, extending THz imaging to the single-molecule level remains a challenge, partly due to the weak THz reflectivity of biomolecules with low dielectric constants. Here, the development of graphene-mediated THz scattering-type scanning near-field optical microscope for direct imaging of single proteins is reported. Importantly, it is found that a graphene substrate with high THz reflectivity and atomic flatness can provide high THz contrast against the protein molecules. In addition, a platinum probe with an optimized shaft length is found enabling the enhancement of the amplitude of the scattered THz near-field signals. By coupling these effects, the topographical and THz scattering images of individual immunoglobulin G (IgG) and ferritin molecules with the size of a few nanometers are obtained, simultaneously. The demonstrated strategy thus opens new routes to imaging single biomolecules with THz.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202005814-sup-0001-SuppMat.pdf552.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. N. Longchamp, S. Rauschenbach, S. Abb, C. Escher, T. Latychevskaia, K. Kern, H. W. Fink, Proc. Natl. Acad. Sci. USA 2017, 114, 1474.
- 2H. G. Hansma, J. H. Hoh, Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 115.
- 3M. F. Juette, D. S. Terry, M. R. Wasserman, Z. Zhou, R. B. Altman, Q. Zheng, S. C. Blanchard, Curr. Opin. Chem. Biol. 2014, 20, 103.
- 4Q. X. Chen, X. T. Shao, M. G. Hao, H. B. Fang, R. L. Guan, Z. Q. Tian, M. L. Li, C. R. Wang, L. N. Ji, H. Chao, J.-L. Guan, J. J. Diao, Biomaterials 2020, 250, 120059.
- 5D. M. Mittleman, Opt. Express 2018, 26, 9417.
- 6X. Yang, X. Zhao, K. Yang, Y. P. Liu, Y. Liu, W. L. Fu, Y. Luo, Trends Biotechnol. 2016, 34, 810.
- 7X. Y. Chen, Z. Tian, Y. C. Lu, Y. H. Xu, X. Q. Zhang, C. M. Ouyang, J. Q. Gu, J. G. Han, W. L. Zhang, Adv. Opt. Mater. 2020, 8, 1900660.
- 8B. Ferguson, X. C. Zhang, Nat. Mater. 2002, 1, 26.
- 9G. S. Geng, G. B. Dai, D. D. Li, S. L. Zhou, Z. X. Li, Z. B. Yang, Y. H. Xu, J. G. Han, T. Y. Chang, H.-L. Cui, H. B. Wang, Biotechnol. Prog. 2019, 35, 2741.
- 10A. J. L. Adam, J. Infrared, Millimeter, Terahertz Waves 2011, 32, 976.
- 11G. B. Dai, Z. B. Yang, G. S. Geng, M. L. Li, T. Y. Chang, D. S. Wei, C. L. Du, H.-L. Cui, H. B. Wang, Appl. Spectrosc. Rev. 2018, 53, 806.
- 12X. Z. Chen, D. B. Hu, R. Y. Mescall, G. J. You, D. N. Basov, Q. Dai, M. K. Liu, Adv. Mater. 2019, 31, 1804774.
- 13A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Nano Lett. 2008, 8, 3766.
- 14R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wnezel, H. G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, M. Helm, Nano Lett. 2012, 12, 4336.
- 15K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, H. Han, Nano Lett. 2015, 15, 549.
- 16M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, R. Hober, Nat. Photonics 2014, 8, 841.
- 17H. T. Stinson, A. Sternbach, O. Najera, R. Jing, A. S. McLeod, T. V. Slusar, A. Mueller, L. Anderegg, H. T. Kim, M. Rozenberg, D. N. Basov, Nat. Commun. 2018, 9, 3604.
- 18M. C. Giordano, S. Mastel, C. Liewald, L. L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, R. Hillenbrand, F. Keilmann, G. Scamarcio, M. S. Vitiello, Opt. Express 2018, 26, 18423.
- 19J. W. Zhang, X. Z. Chen, S. Mills, T. Ciavatti, Z. H. Yao, R. Mescall, H. Hu, V. Semenenko, Z. Fei, H. Li, V. Perebeinos, H. Tao, Q. Dai, X. Du, M. K. Liu, ACS Photonics 2018, 5, 2645.
- 20S. Mastel, M. B. Lundeberg, P. Alonso-Gonzale, Y. D. Gao, K. Watanabe, T. Taniguchi, J. Hone, F. H. L. Koppen, A. Y. Nikitin, R. Hillenbrand, Nano Lett. 2017, 17, 6526.
- 21A. G. Markelz, A. Roitberg, E. J. Heilweil, Chem. Phys. Lett. 2000, 320, 42.
- 22K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 23H. J. An, H. B. Liang, Z. D. Liu, H. S. Yang, Q. D. Liu, H. B. Wang, J. Food Sci. 2011, 76, N11.
- 24H. B. Wang, H. J. An, F. Zhang, Z. X. Zhang, M. Ye, P. Xiu, Y. Zhang, J. Hu, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 2008, 26, L41.
- 25S. M. Lindsay, L. A. Nagahara, T. Thundat, U. Knipping, R. L. Rill, B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, P. K. Hansma, J. Biomol. Struct. Dyn. 1989, 7, 279.
- 26C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz, Nature 2009, 462, 339.
- 27Z. B. Yang, S. L. Feng, W. Yao, J. G. Han, H. B. Wang, RSC Adv. 2019, 9, 3486.
- 28H. Cui, X. B. Zhang, J. F. Su, Y. X. Yang, Q. Fang, X. Y. Wei, Optik 2015, 126, 3533.
- 29L. Duvillaret, F. Garet, J. L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 1996, 2, 739.
- 30X. Q. Zou, S. Wei, J. Jasensky, M. Y. Xiao, Q. M. Wang, C. L. Brooks, Z. Chen, J. Am. Chem. Soc. 2017, 139, 1928.
- 31B. Knoll, F. Keilmann, Opt. Commun. 2000, 182, 321.
- 32Z. Liu, Z. B. Yang, B. Peng, C. Cao, C. Zhang, H. J. You, Q. H. Xiong, Z. Y. Li, J. X. Fang, Adv. Mater. 2014, 26, 2431.
- 33K. Liu, Y. C. Bai, L. Zhang, Z. B. Yang, Q. K. Fan, H. Q. Zheng, Y. D. Yin, C. B. Gao, Nano Lett. 2016, 16, 3675.
- 34O. Ouerghi, A. Touhami, A. Othmane, H. Ben Ouada, C. Martelet, C. Fretigny, N. Jaffrezic-Renault, Sens. Actuators, B 2002, 84, 167.
- 35T. Taubner, R. Hillenbrand, F. Keilmann, J. Microsc. 2003, 210, 311.
- 36C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, E. J. Choi, Appl. Phys. Lett. 2011, 98, 071905.
- 37X. S. Zheng, C. Zong, M. X. Xu, X. Wang, B. Ren, Small 2015, 11, 3395.
- 38I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. B. Zhang, M. Knez, J. Heberle, A. M. Bittner, R. Hillenbrand, Nat. Commun. 2013, 4, 2890.