Engineering Supramolecular Polymer Conformation for Efficient Carbon Nanotube Sorting
Theodore Z. Gao
Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorZehao Sun
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorXuzhou Yan
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorHung-Chin Wu
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorHongping Yan
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Zhenan Bao
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
E-mail: [email protected]
Search for more papers by this authorTheodore Z. Gao
Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorZehao Sun
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorXuzhou Yan
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorHung-Chin Wu
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorHongping Yan
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorCorresponding Author
Zhenan Bao
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Supramolecular polymer sorting is a promising approach to separating single-walled carbon nanotubes (CNTs) by electronic type. Unlike conjugated polymers, they can be easily removed from the CNTs after sorting by breaking the supramolecular bonds, allowing for isolation of electronically pristine CNTs as well as facile recycling of the sorting polymer. However, little is understood about how supramolecular polymer properties affect CNT sorting. Herein, chain stoppers are used to engineer the conformation of a supramolecular sorting polymer, thereby elucidating the relationship between sorting efficacy and polymer conformation. Through NMR and UV–vis spectroscopy, small-angle X-ray scattering (SAXS), and thermodynamic modeling, it is shown that this supramolecular polymer exhibits ring–chain equilibrium, and that this equilibrium can be skewed toward chains by the addition of chain stoppers. Furthermore, by controlling the stopper–monomer ratio, the sorting yield can be doubled from 7% to 14% without compromising the semiconducting purity (>99%) or properties of sorted CNTs.
Conflict of Interest
A patent related to this research has been submitted (US 2016/0280548 A1) and another one has been filed.
Supporting Information
Filename | Description |
---|---|
smll202000923-sup-0001-SuppMat.pdf908.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Zhong, Z. Zhang, L.-M. Peng, Nanotechnology 2017, 28, 212001.
- 2Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, C. Zhou, Top. Curr. Chem. 2017, 375, 75.
- 3J. Zhu, M. C. Hersam, Adv. Mater. 2017, 29, 1603895.
- 4K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H. Y. Y. Nyein, K. Takei, A. Javey, Adv. Mater. 2016, 28, 4397.
- 5A. E. Islam, J. A. Rogers, M. A. Alam, Adv. Mater. 2015, 27, 7908.
- 6L. Cai, C. Wang, Nanoscale Res. Lett. 2015, 10, 320.
- 7G. S. Tulevski, A. D. Franklin, D. Frank, J. M. Lobez, Q. Cao, H. Park, A. Afzali, S.-J. Han, J. B. Hannon, W. Haensch, ACS Nano 2014, 8, 8730.
- 8S. Qiu, K. Wu, B. Gao, L. Li, H. Jin, Q. Li, Adv. Mater. 2018, 31, 1800750.
- 9J. Lefebvre, J. Ding, Z. Li, P. Finnie, G. Lopinski, P. R. L. Malenfant, Acc. Chem. Res. 2017, 50, 2479.
- 10H. Wang, Z. Bao, Nano Today 2015, 10, 737.
- 11T. Lei, I. Pochorovski, Z. Bao, Acc. Chem. Res. 2017, 50, 1096.
- 12T. Lei, X. Chen, G. Pitner, H.-S. P. Wong, Z. Bao, J. Am. Chem. Soc. 2016, 138, 802.
- 13X. Yu, D. Liu, L. Kang, Y. Yang, X. Zhang, Q. Lv, S. Qiu, H. Jin, Q. Song, J. Zhang, Q. Li, ACS Appl. Mater. Interfaces 2017, 9, 15719.
- 14Y. Joo, G. J. Brady, C. Kanimozhi, J. Ko, M. J. Shea, M. T. Strand, M. S. Arnold, P. Gopalan, ACS Appl. Mater. Interfaces 2017, 9, 28859.
- 15T. Z. Gao, T. Lei, F. Molina-Lopez, Z. Bao, Small Methods 2018, 2, 1800189.
- 16Z. Li, J. Ding, C. Guo, J. Lefebvre, P. R. L. Malenfant, Adv. Funct. Mater. 2018, 28, 1705568.
- 17Z. Zhang, Y. Che, R. A. Smaldone, M. Xu, B. R. Bunes, J. S. Moore, L. Zang, J. Am. Chem. Soc. 2010, 132, 14113.
- 18F. Lemasson, J. Tittmann, F. Hennrich, N. Stürzl, S. Malik, M. M. Kappes, M. Mayor, Chem. Commun. 2011, 47, 7428.
- 19W. Z. Wang, W. F. Li, X. Y. Pan, C. M. Li, L.-J. Li, Y. G. Mu, J. A. Rogers, M. B. Chan-Park, Adv. Funct. Mater. 2011, 21, 1643.
- 20S. Liang, G. Chen, Y. Zhao, J. Mater. Chem. C 2013, 1, 5477.
- 21S. Liang, Y. Zhao, A. Adronov, J. Am. Chem. Soc. 2014, 136, 970.
- 22Y. Joo, G. J. Brady, M. J. Shea, M. B. Oviedo, C. Kanimozhi, S. K. Schmitt, B. M. Wong, M. S. Arnold, P. Gopalan, ACS Nano 2015, 9, 10203.
- 23J. M. Paulusse, R. P. Sijbesma, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5445.
- 24M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, J. S. Moore, Chem. Rev. 2009, 109, 5755.
- 25F. Toshimitsu, N. Nakashima, Nat. Commun. 2014, 5, 5041.
- 26F. Toshimitsu, N. Nakashima, Sci. Rep. 2015, 5, 18066.
- 27I. Pochorovski, H. Wang, J. I. Feldblyum, X. Zhang, A. L. Antaris, Z. Bao, J. Am. Chem. Soc. 2015, 137, 4328.
- 28A. Chortos, I. Pochorovski, P. Lin, G. Pitner, X. Yan, T. Z. Gao, J. W. F. To, T. Lei, J. W. Will, H.-S. P. Wong, Z. Bao, ACS Nano 2017, 11, 5660.
- 29G. Ercolani, L. Mandolini, P. Mencarelli, S. Roelens, J. Am. Chem. Soc. 1993, 115, 3901.
- 30R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe, E. W. Meijer, Science 1997, 278, 1601.
- 31G. Ercolani, J. Phys. Chem. B 1998, 102, 5699.
- 32P. M. Saville, E. M. Sevick, Langmuir 1998, 14, 3137.
- 33T. Pinault, C. Cannizzo, B. Andrioletti, G. Ducouret, F. Lequeux, L. Bouteiller, Langmuir 2009, 25, 8404.
- 34T. Pinault, B. Andrioletti, L. Bouteiller, Beilstein J. Org. Chem. 2010, 6, 869.
- 35M. Ciaccia, I. Tosi, L. Baldini, R. Cacciapaglia, L. Mandolini, S. Di Stefano, C. A. Hunter, Chem. Sci. 2015, 6, 144.
- 36A. Tessa ten Cate, H. Kooijman, A. L. Spek, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2004, 126, 3801.
- 37A. Tessa ten Cate, R. P. Sijbesma, Macromol. Rapid Commun. 2002, 23, 1094.
- 38S. Li, T. Xiao, W. Xia, X. Ding, Y. Yu, J. Jiang, L. Wang, Chem. - Eur. J. 2011, 17, 10716.
- 39T. Xiao, X. Feng, S. Ye, Y. Guan, S.-L. Li, Q. Wang, Y. Ji, D. Zhu, X. Hu, C. Lin, Y. Pan, L. Wang, Macromolecules 2012, 45, 9585.
- 40H. M. Keizer, J. J. González, M. Segura, P. Prados, R. P. Sijbesma, E. W. Meijer, J. de Mendoza, Chem. - Eur. J. 2005, 11, 4602.
- 41P. Imin, F. Cheng, A. Adronov, Polym. Chem. 2011, 2, 1404.
- 42F. Jakubka, S. P. Schießl, S. Martin, J. M. Englert, F. Hauke, A. Hirsch, J. Zaumseil, ACS Macro Lett. 2012, 1, 815.
- 43N. A. Rice, A. V. Subrahmanyam, S. E. Laengert, A. Adronov, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2510.
- 44M. J. Shea, R. D. Mehlenbacher, M. T. Zanni, M. S. Arnold, J. Phys. Chem. Lett. 2014, 5, 3742.
- 45Y. Cohen, L. Avram, L. Frish, Angew. Chem., Int. Ed. 2005, 44, 520.
- 46E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42, 288.
- 47C. Cobas, S. Sykora, Smash 2008 Conference 2008, https://doi.org/10.3247/sl2nmr08.010.
- 48T. F. Paffen, G. Ercolani, T. F. de Greef, E. W. Meijer, J. Am. Chem. Soc. 2015, 137, 1501.
- 49T. F. Paffen, A. J. Teunissen, T. F. de Greef, E. W. Meijer, Proc. Natl. Acad. Sci. USA 2017, 114, 12882.
- 50S. H. M. Söntjens, R. P. Sijbesma, M. H. P. van Genderen, E. W. Meijer, J. Am. Chem. Soc. 2000, 122, 7487.
- 51S. Di Stefano, L. Mandolini, Phys. Chem. Chem. Phys. 2019, 21, 955.
- 52A. D. Bain, Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63.
- 53W. Xu, J. Zhao, L. Qian, X. Han, L. Wu, W. Wu, M. Song, L. Zhou, W. Su, C. Wang, S. Nie, Z. Cui, Nanoscale 2014, 6, 1589.
- 54J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, R. J. Nicholas, J. Am. Chem. Soc. 2008, 130, 3543.
- 55H. Wang, B. Hsieh, G. Jiménez-Osés, P. Liu, C. J. Tassone, Y. Diao, T. Lei, K. N. Houk, Z. Bao, Small 2015, 11, 126.
- 56J. Ouyang, J. Ding, J. Lefebvre, Z. Li, C. Guo, A. J. Kell, P. R. L. Malenfant, ACS Nano 2018, 12, 1910.
- 57Z. Li, J. Ding, J. Lefebvre, P. R. L. Malenfant, ACS Omega 2018, 3, 3413.
- 58J. Ding, Z. Li, J. Lefebvre, X. Du, P. R. L. Malenfant, J. Phys. Chem. C 2016, 120, 21946.
- 59J. Ilavsky, J. Appl. Crystallogr. 2012, 45, 324.
- 60G. Beaucage, J. Appl. Crystallogr. 1995, 28, 717.
- 61J. Ilavsky, P. R. Jemian, J. Appl. Crystallogr. 2009, 42, 347.
- 62M. D'Abramo, C. L. Castellazzi, M. Orozco, A. Amadei, J. Phys. Chem. B 2013, 117, 8697.
- 63H. Fenniri, P. Mathivanan, K. L. Vidale, D. M. Sherman, K. Hallenga, K. V. Wood, J. G. Stowell, J. Am. Chem. Soc. 2001, 123, 3854.
- 64S. Oliver, D. S. Thomas, M. Kavallaris, O. Vittorio, C. Boyer, Polym. Chem. 2016, 7, 2542.
- 65K. K. Kartha, N. K. Allampally, S. Yagai, R. Q. Albuquerque, G. Fernández, Chem. - Eur. J. 2019, 25, 9230.
- 66J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G. P. Lopinski, C. T. Kingston, B. Simard, P. R. L. Malenfant, Nanoscale 2014, 6, 2328.
- 67M. Pfohl, D. D. Tune, A. Graf, J. Zaumseil, R. Krupke, B. S. Flavel, ACS Omega 2017, 2, 1163.