Hyperboloid-Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG
Zhihe Guo
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYingchun Qin
National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorPeizong Chen
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJinliang Hu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYi Zhou
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorXuyang Zhao
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorZhiran Liu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiyan Fei
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Xiaoshun Jiang
National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiang Wu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZhihe Guo
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYingchun Qin
National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorPeizong Chen
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJinliang Hu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYi Zhou
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorXuyang Zhao
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorZhiran Liu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiyan Fei
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Xiaoshun Jiang
National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xiang Wu
Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Whispering gallery mode (WGM) microresonators have been used as optical sensors in fundamental research and practical applications. The majority of WGM sensors are passive resonators that require complex systems, thereby limiting their practicality. Active resonators enable the remote excitation and collection of WGM-modulated fluorescence spectra, without requiring complex systems, and can be used as alternatives to passive microresonators. This paper demonstrates an active microresonator, which is a microdisk laser in a hyperboloid-drum (HD) shape. The HD microdisk lasers are a combination of a rhodamine B-doped photoresist and a silica microdisk. These HD microdisk lasers can be utilized for the detection of label-free biomolecules. The biomolecule concentration can be as low as 1 ag mL−1, whereas the theoretical detection limit of the biosensor for human IgG in phosphate buffer saline is 9 ag mL−1 (0.06 aM). Additionally, the biosensors are able to detect biomolecules in an artificial serum, with a theoretical detection limit of 9 ag mL−1 (0.06 aM). These results are approximately four orders of magnitude more sensitive than those for the typical active WGM biosensors. The proposed HD microdisk laser biosensors show enormous detection potential for biomarkers in protein secretions or body fluids.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000239-sup-0001-SuppMat.pdf383.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, Proc. Natl. Acad. Sci. USA 2010, 107, 22407.
- 2M. R. Foreman, J. D. Swaim, F. Vollmer, Adv. Opt. Photonics 2015, 7, 168.
- 3J. Ward, O. Benson, Laser Photonics Rev. 2011, 5, 553.
- 4A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, G. Righini, Laser Photonics Rev. 2010, 4, 457.
- 5X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, L. Xu, Opt. Express 2011, 19, 22242.
- 6X. Tu, X. Wu, M. Li, L. Liu, L. Xu, Opt. Express 2012, 20, 19996.
- 7Y. J. Chen, U. Schoeler, C. H. B. Huang, F. Vollmer, Small 2018, 14, 1703705.
- 8Y. Zhi, X. C. Yu, Q. Gong, L. Yang, Y. F. Xiao, Adv. Mater. 2017, 29, 1604920.
- 9J. Su, Sensors 2017, 17, 540.
- 10F. Vollmer, L. Yang, Nanophotonics 2012, 1, 267.
- 11S. Liu, W. Sun, Y. Wang, X. Yu, K. Xu, Y. Huang, S. Xiao, Q. Song, Optica 2018, 5, 612.
- 12E. Ozgur, K. E. Roberts, E. O. Ozgur, A. N. Gin, J. R. Bankhead, Z. Wang, J. Su, Anal. Chem. 2019, 91, 11872.
- 13Z. Guo, Q. Lu, C. Zhu, B. Wang, Y. Zhou, X. Wu, Opt. Express 2019, 27, 12424.
- 14X. Feng, G. Zhang, L. K. Chin, A. Q. Liu, B. Liedberg, ACS Sens. 2017, 2, 955.
- 15T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, A. François, Laser Photonics Rev. 2017, 11, 1600265.
- 16Y. Zhang, T. Zhou, B. Han, A. Zhang, Y. Zhao, Nanoscale 2018, 10, 13832.
- 17Z. Chen, M. Li, X. Wu, L. Liu, L. Xu, Opt. Express 2015, 23, 17659.
- 18Y. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, Y. Zhao, Sens. Actuators, B 2017, 244, 393.
- 19J. Velázquez-Gonzálezab, D. Monzón-Hernándeza, D. Moreno-Hernándeza, F. Martínez-Piñónb, I. Hernández-Romano, Sens. Actuators, B 2017, 242, 912.
- 20T. Tang, X. Wu, L. Liu, L. Xu, Appl. Opt. 2016, 55, 395.
- 21S. Wondimu, M. Hippler, C. Hussal, A. Hofmann, S. Krämmer, J. Lahann, H. Kalt, W. Freude, C. Koos, Opt. Express 2018, 26, 3161.
- 22T. Reynolds, A. François, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, T. M. Monro, Anal. Chem. 2016, 88, 4036.
- 23U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, T. Mappes, Adv. Sci. 2015, 2, 1500066.
10.1002/advs.201500066 Google Scholar
- 24T. Siegle, J. Kellerer, M. Bonenberger, S. Krmmer, C. Klusmann, M. Mller, H. Kalt, Opt. Express 2018, 26, 3579.
- 25Y. C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, X. Fan, Nat. Biomed. Eng. 2017, 1, 724.
- 26H. Li, L. Shang, X. Tu, L. Liu, L. Xu, J. Am. Chem. Soc. 2009, 131, 16612.
- 27Z. Zhang, W. Morrish, K. Gardner, S. Yang, Y. Yang, A. Meldrum, Opt. Express 2019, 27, 26967.
- 28Z. Guo, H. Wang, C. Zhao, L. Chen, S. Liu, J. Hu, Y. Zhou, X. Wu, Nanomaterials 2019, 9, 1439.
- 29U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, S. Kber, Small 2014, 10, 3863.
- 30C. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, Y. Wu, X. Fan, G. D. Peng, Y. J. Rao, Lab Chip 2018, 18, 2741.
- 31M. de Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitjans, S. M. Garcia-Blanco, Opt. Lett. 2019, 44, 5937.
- 32G. S. Murugan, J. S. Wilkinson, M. N. Zervas, Opt. Express 2009, 17, 11916.
- 33N. Riesen, T. Reynolds, A. François, M. R. Henderson, T. M. Monro, Opt. Express 2015, 23, 28896.
- 34I. M. White, H. Oveys, X. Fan, Opt. Lett. 2006, 31, 1319.
- 35L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, H. Li, Opt. Commun. 2017, 402, 181.
- 36H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala, Nat. Photonics 2012, 6, 369.
- 37T. M. Aminabhavi, J. Chem. Eng. Data 1984, 29, 54.
- 38H. Zhu, I. M. White, J. D. Suter, P. S. Dale, X. Fan, Opt. Express 2007, 15, 9139.
- 39S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, Opt. Lett. 2003, 28, 272.
- 40E. Melnik, R. Bruck, P. Müellner, T. Schlederer, R. Hainberger, M. Lämmerhofer, J. Biophotonics 2016, 9, 218.
- 41Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, Y. Fei, Micromachines 2018, 9, 274.
- 42H. Ghali, P. Bianucci, Y. A. Peter, Sens. Bio-Sens. Res. 2017, 13, 9.
10.1016/j.sbsr.2017.01.004 Google Scholar
- 43H. M. Wong, J. J. Wang, C. H. Wang, Ind. Eng. Chem. Res. 2001, 40, 933.
- 44S. Dong, M. Tong, D. Zhang, T. Huang, Sens. Actuators, B 2017, 251, 650.
- 45Q. Wang, J. Y. Jing, B. T. Wang, IEEE Trans. Instrum. Meas. 2019, 68, 3350.
- 46M. Lu, H. Zhu, C. G. Bazuin, W. Peng, J. F. Masson, ACS Sens. 2019, 4, 613.
- 47L. Liang, L. Jin, Y. Ran, L. P. Sun, B. O. Guan, Anal. Chem. 2018, 90, 10851.
- 48M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, S. M. Garcia-Blanco, Opt. Express 2019, 27, 18508.
- 49A. J. Qavi, T. M. Mysz, R. C. Bailey, Anal. Chem. 2011, 83, 6827.
- 50O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, R. C. Bailey, Biosens. Bioelectron. 2012, 36, 56.
- 51M. S. Luchansky, A. L. Washburn, M. S. McClellan, R. C. Bailey, Lab Chip 2011, 11, 2042.
- 52V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, Nano Lett. 2013, 13, 3347.
- 53S. Berneschi, F. Baldini, A. Cosci, D. Farnesi, G. N. Conti, C. T. S. Tombelli, S. Pelli, A. Giannetti, Sens. Actuators, B 2017, 242, 1057.
- 54H. Wang, H. Wang, M. Zhang, Y. Jia, Z. Li, RSC Adv. 2019, 9, 32906.
- 55Y. Qian, T. Fan, Y. Yao, X. Shi, X. Liao, F. Zhou, F. Gao, Sens. Actuators, B 2018, 254, 483.
- 56S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, C. Koos, Lab Chip 2017, 17, 1740.
- 57X. Yang, Y. Luo, Y. Liu, C. Gong, Y. Wang, Y. J. Rao, G. D. Peng, Y. Gong, Lab Chip 2020, 20, 923.
- 58N. Sandhyarani, in Electrochemical Biosensors, (Ed: A. A. Ensafi), Elsevier, Amsterdam, Netherlands 2019, Ch. 3.
- 59C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, Opt. Express 2012, 20, 18319.
- 60G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, T. J. Kippenberg, Nat. Phys. 2009, 5, 909.
- 61G. Wang, M. Zhao, J. Ma, G. Li, Y. Chen, X. Jiang, M. Xiao, Sci. China Math. 2015, 58, 1.
- 62J. C. Ramirez, J. N. Schianti, D. E. Souto, L. T. Kubota, H. E. Hernandez-Figueroa, L. H. Gabrielli, Biomed. Opt. Express 2018, 9, 2168.