Effects of Ceria Nanoparticles and CeCl3 on Plant Growth, Biological and Physiological Parameters, and Nutritional Value of Soil Grown Common Bean (Phaseolus vulgaris)
Yuhui Ma
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChangjian Xie
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255000 Shandong, China
Search for more papers by this authorXiao He
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorBoxin Zhang
International Department, Beijing National Day School, Beijing, 100049 China
Search for more papers by this authorJie Yang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorMinghui Sun
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenhe Luo
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSheng Feng
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJunzhe Zhang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorGuohua Wang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zhiyong Zhang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]
Search for more papers by this authorYuhui Ma
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChangjian Xie
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255000 Shandong, China
Search for more papers by this authorXiao He
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorBoxin Zhang
International Department, Beijing National Day School, Beijing, 100049 China
Search for more papers by this authorJie Yang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorMinghui Sun
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenhe Luo
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSheng Feng
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJunzhe Zhang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorGuohua Wang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Zhiyong Zhang
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The release of metal ions may play an important role in toxicity of metal-based nanoparticles. In this report, a life cycle study is carried out in a greenhouse, to compare the effects of ceria nanoparticles (NPs) and Ce3+ ions at 0, 50, 100, and 200 mg Ce kg−1 on plant growth, biological and physiological parameters, and nutritional value of soil-grown common bean plants. Ceria NPs have a tendency to negatively affect photosynthesis, but the effect is not statistically significant. Ce3+ ionic treatments at 50, 100, and 200 mg Ce kg−1 result in increases of 1.25-, 0.66-, and 1.20-fold in stomatal conductance, respectively, relative to control plants. Both ceria NPs and Ce3+ ions disturb the homeostasis of antioxidant defense system in the plants, but only 200 mg Ce kg−1 ceria NPs significantly induce lipid peroxidation in the roots. Ceria NP treatments tend to reduced fresh weight and to increase mineral contents of the green pods, but have no effect on the organic nutrient contents. On the contrary, Ce3+ ion treatments modify the organic compositions and thus alter the nutritional quality and flavor of the green pods. These results suggest that the two Ce forms may have different mechanisms on common bean plants.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201907435-sup-0001-SuppMat.pdf274.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. I. Y. Tok, F. Y. C. Boey, Z. Dong, X. L. Sun, J. Mater. Process. Technol. 2007, 190, 217.
- 2P. Franco, M. Martino, V. Palma, A. Scarpellini, I. De Marco, Int. J. Hydrogen Energy 2018, 43, 19965.
- 3M. Melchionna, P. Fornasiero, Mater. Today 2014, 17, 349.
- 4H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-C. Liu, C.-H. Yan, J. Phys. Chem. B 2005, 109, 24380.
- 5Z. Yang, K. Zhou, X. Liu, Q. Tian, D. Lu, S. Yang, Nanotechnology 2007, 18, 185606.
- 6J. H. Priester, Y. Ge, R. E. Mielke, A. M. Horst, S. C. Moritz, K. Espinosa, J. Gelb, S. L. Walker, R. M. Nisbet, Y. J. An, J. P. Schimel, R. G. Palmer, J. A. Hernandez-Viezcas, L. Zhao, J. L. Gardea-Torresdey, P. A. Holden, Proc. Natl. Acad. Sci. USA 2012, 109, 2451.
- 7S. Majumdar, I. C. Almeida, E. A. Arigi, H. Choi, N. C. VerBerkmoes, J. Trujillo-Reyes, J. P. Flores-Margez, J. C. White, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Environ. Sci. Technol. 2015, 49, 13283.
- 8L. Zhao, Y. Sun, J. A. Hernandez-Viezcas, J. Hong, S. Majumdar, G. Niu, M. Duarte-Gardea, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Environ. Sci. Technol. 2015, 49, 2921.
- 9L. Zhao, J. R. Peralta-Videa, C. M. Rico, J. A. Hernandez-Viezcas, Y. Sun, G. Niu, A. Servin, J. E. Nunez, M. Duarte-Gardea, J. L. Gardea-Torresdey, J. Agric. Food Chem. 2014, 62, 2752.
- 10J. Hong, L. Wang, Y. Sun, L. Zhao, G. Niu, W. Tan, C. M. Rico, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Sci. Total Environ. 2016, 563–564, 904.
- 11C. M. Rico, M. I. Morales, A. C. Barrios, R. McCreary, J. Hong, W. Y. Lee, J. Nunez, J. R. Peralta-Videa, J. L. Gardea-Torresdey, J. Agric. Food Chem. 2013, 61, 11278.
- 12J. R. Peralta-Videa, J. A. Hernandez-Viezcas, L. Zhao, B. C. Diaz, Y. Ge, J. H. Priester, P. A. Holden, J. L. Gardea-Torresdey, Plant Physiol. Biochem. 2014, 80, 128.
- 13C. M. Rico, S. C. Lee, R. Rubenecia, A. Mukherjee, J. Hong, J. R. Peralta-Videa, J. L. Gardea-Torresdey, J. Agric. Food Chem. 2014, 62, 9669.
- 14J. Hawthorne, R. De la Torre Roche, B. Xing, L. A. Newman, X. Ma, S. Majumdar, J. Gardea-Torresdey, J. C. White, Environ. Sci. Technol. 2014, 48, 13102.
- 15X. Gui, M. M. Rui, Y. H. Song, Y. H. Ma, Y. K. Rui, P. Zhang, X. He, Y. Y. Li, Z. Y. Zhang, L. M. Liu, Environ. Sci. Pollut. Res. 2017, 24, 13775.
- 16X. Gui, Z. Y. Zhang, S. T. Liu, Y. H. Ma, P. Zhang, X. He, Y. Y. Li, J. Zhang, H. F. Li, Y. K. Rui, L. M. Liu, W. D. Cao, PLoS One 2015, 10, 0134261.
- 17S. J. Bradfield, P. Kumar, J. C. White, S. D. Ebbs, Plant Physiol. Biochem. 2017, 110, 128.
- 18Z. M. Cao, C. Stowers, L. Rossi, W. L. Zhang, L. Lombardini, X. M. Ma, Environ. Sci.: Nano 2017, 4, 1086.
- 19Z. M. Cao, L. Rossi, C. Stowers, W. L. Zhang, L. Lombardini, X. M. Ma, Environ. Sci. Pollut. Res. 2018, 25, 930.
- 20D. H. Lin, B. S. Xing, Environ. Pollut. 2007, 150, 243.
- 21C. Ma, J. C. White, O. P. Dhankher, B. Xing, Environ. Sci. Technol. 2015, 49, 7109.
- 22P. Miralles, T. L. Church, A. T. Harris, Environ. Sci. Technol. 2012, 46, 9224.
- 23P. Zhang, Y. H. Ma, Z. Y. Zhang, X. He, J. Zhang, Z. Guo, R. Z. Tai, Y. L. Zhao, Z. F. Chai, ACS Nano 2012, 6, 9943.
- 24Y. H. Ma, P. Zhang, Z. Y. Zhang, X. He, Y. Y. Li, J. Zhang, L. R. Zheng, S. Q. Chu, K. Yang, Y. L. Zhao, Z. F. Chai, Nanotoxicology 2015, 9, 262.
- 25Y. H. Ma, P. Zhang, Z. Y. Zhang, X. He, J. Z. Zhang, Y. Y. Ding, J. Zhang, L. R. Zheng, Z. Guo, L. J. Zhang, Z. F. Chai, Y. L. Zhao, Environ. Sci. Technol. 2015, 49, 10667.
- 26Y. K. Rui, P. Zhang, Y. B. Zhang, Y. H. Ma, X. He, X. Gui, Y. Y. Li, J. Zhang, L. R. Zheng, S. Q. Chu, Z. Guo, Z. F. Chai, Y. L. Zhao, Z. Y. Zhang, Environ. Pollut. 2015, 198, 8.
- 27P. Zhang, Y. H. Ma, Z. Y. Zhang, X. He, Y. Y. Li, J. Zhang, L. R. Zheng, Y. L. Zhao, Nanotoxicology 2015, 9, 1.
- 28C. J. Xie, Y. H. Ma, J. Yang, B. X. Zhang, W. H. Luo, S. Feng, J. Z. Zhang, G. H. Wang, X. He, Z. Y. Zhang, Environ. Pollut. 2019, 250, 530.
- 29Y. H. Ma, X. He, P. Zhang, Z. Y. Zhang, Z. Guo, R. Z. Tai, Z. J. Xu, L. J. Zhang, Y. Y. Ding, Y. L. Zhao, Z. F. Chai, Nanotoxicology 2011, 5, 743.
- 30P. Zhang, Y. H. Ma, Z. Y. Zhang, X. He, Z. Guo, R. Z. Tai, Y. Y. Ding, Y. L. Zhao, Z. F. Chai, Environ. Sci. Technol. 2012, 46, 1834.
- 31F. Larner, Y. Dogra, A. Dybowska, J. Fabrega, B. Stolpe, L. J. Bridgestock, R. Goodhead, D. J. Weiss, J. Moger, J. R. Lead, E. Valsami-Jones, C. R. Tyler, T. S. Galloway, M. Rehkämper, Environ. Sci. Technol. 2012, 46, 12137.
- 32C. R. Janssen, D. G. Heijerick, K. A. C. De Schamphelaere, H. E. Allen, Environ. Int. 2003, 28, 793.
- 33M. Volland, M. Hampel, J. A. Martos-Sitcha, C. Trombini, G. Martínez-Rodríguez, J. Blasco, Environ. Sci. Pollut. Res. 2015, 22, 17414.
- 34Al Rmalli, S. W. C. F. Harrington, M. Ayub, P. I. Haris, J. Environ. Monit. 2005, 7, 279.
- 35Z.-D. Liu, Q. Zhou, Z.-N. Hong, R.-K. Xu, Front. Plant Sci. 2017, 8, 1489.
- 36W. Zhang, S. D. Ebbs, C. Musante, J. C. White, C. Gao, X. Ma, J. Agric. Food Chem. 2015, 63, 382.
- 37J. Lv, P. Christie, S. Zhang, Environ. Sci.: Nano 2019, 6, 41.
- 38R. J. Fellows, Z. Wang, C. C. Ainsworth, Environ. Sci. Technol. 2003, 37, 5247.
- 39P. P. Fu, Q. Xia, H.-M. Hwang, P. C. Ray, H. Yu, J. Food Drug Anal. 2014, 22, 64.
- 40R. Fryzova, M. Pohanka, P. Martinkova, H. Cihlarova, M. Brtnicky, J. Hladky, J. Kynicky, in Reviews of Environmental Contamination and Toxicology, Vol. 245 (Ed: P. Voogt), Springer International Publishing, Cham 2018, pp. 129–156.
- 41C. M. Rico, J. Hong, M. I. Morales, L. Zhao, A. C. Barrios, J. Y. Zhang, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Environ. Sci. Technol. 2013, 47, 5635.
- 42L. Zhao, B. Peng, J. A. Hernandez-Viezcas, C. Rico, Y. Sun, J. R. Peralta-Videa, X. Tang, G. Niu, L. Jin, A. Varela-Ramirez, J. Y. Zhang, J. L. Gardea-Torresdey, ACS Nano 2012, 6, 9615.
- 43N. P. Sardesai, D. Andreescu, S. Andreescu, J. Am. Chem. Soc. 2013, 135, 16770.
- 44M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du, C. Yan, Sci. China Mater. 2019, 62, 1727.
- 45J. Gagnon, K. M. Fromm, Eur. J. Inorg. Chem. 2015, 2015, 4510.
- 46A. Asati, S. Santra, C. Kaittanis, J. M. Perez, ACS Nano 2010, 4, 5321.
- 47J. M. Dowding, S. Das, A. Kumar, T. Dosani, R. McCormack, A. Gupta, T. X. T. Sayle, D. C. Sayle, L. von Kalm, S. Seal, W. T. Self, ACS Nano 2013, 7, 4855.
- 48C. M. Rico, M. G. Johnson, M. A. Marcus, Environ. Sci.: Nano 2018, 5, 1807.
- 49E. G. Heckert, S. Seal, W. T. Self, Environ. Sci. Technol. 2008, 42, 5014.
- 50L. Van Nhan, C. Ma, Y. Rui, S. Liu, X. Li, B. Xing, L. Liu, Sci. Rep. 2015, 5, 11618.
- 51I. Rodea-Palomares, S. Gonzalo, J. Santiago-Morales, F. Leganes, E. Garcia-Calvo, R. Rosal, F. Fernandez-Pinas, Aquat. Toxicol. 2012, 122–123, 133.
- 52Z. Hu, H. Richter, G. Sparovek, E. Schnug, J. Plant Nutr. 2004, 27, 183.
- 53X. Pang, D. Li, A. Peng, Environ. Sci. Pollut. Res. 2002, 9, 143.
- 54R. Shyam, N. C. Aery, J. Soil Sci. Plant Nutr. 2012, 12, 1.
- 55M. Wu, P.-Y. Wang, L.-G. Sun, J.-J. Zhang, J. Yu, Y.-W. Wang, G.-X. Chen, Plant Growth Regul. 2014, 74, 251.
- 56F. Hong, L. Wang, X. Meng, Z. Wei, G. Zhao, Biol. Trace Elem. Res. 2002, 89, 263.
- 57C.-J. Liang, X.-h. Huang, Q. Zhou, J. Environ. Sci. 2006, 18, 1147.
- 58S. M. Ramirez-Olvera, L. I. Trejo-Tellez, S. Garcia-Morales, J. A. Perez-Sato, F. C. Gomez-Merino, PLoS One 2018, 13, 0194691.
- 59S. Saha, G. Singh, V. Mahajan, H. S. Gupta, Plant Foods Hum. Nutr. 2009, 64, 174.
- 60Z. Rengel, G. D. Batten, D. E. Crowley, Field Crops Res. 1999, 60, 27.
- 61C. M. Rico, A. C. Barrios, W. Tan, R. Rubenecia, S. C. Lee, A. Varela-Ramirez, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Environ. Sci. Pollut. Res. 2015, 22, 10551.
- 62G. M. Yang, Z. G. Sun, X. F. Lv, Y. Y. Deng, Q. Zhou, X. H. Huang, Biol. Trace Elem. Res. 2012, 150, 396.
- 63L. Wang, J. Li, Q. Zhou, G. Yang, X. L. Ding, X. Li, C. X. Cai, Z. Zhang, H. Y. Wei, T. H. Lu, X. W. Deng, X. H. Huang, Proc. Natl. Acad. Sci. USA 2014, 111, 12936.
- 64E. Agathokleous, M. Kitao, E. J. Calabrese, Environ. Pollut. 2018, 238, 1044.
- 65L. Wang, M. Cheng, Q. Yang, J. Li, X. Wang, Q. Zhou, S. Nagawa, B. Xia, T. Xu, R. Huang, J. He, C. Li, Y. Fu, Y. Liu, J. Bao, H. Wei, H. Li, L. Tan, Z. Gu, A. Xia, X. Huang, Z. Yang, X. W. Deng, Proc. Natl. Acad. Sci. USA 2019, 116, 14349.
- 66B. K. Xiong, P. Chen, Research and Application for Agriculture and Forest of Rare Earth, Metallurgy Industry Publishing Company, Beijing 2000.
- 67Z.-Z. Zhang, J.-J. Xu, Z.-J. Shi, Y.-F. Cheng, Z.-Q. Ji, R. Deng, R.-C. Jin, J. Hazard. Mater. 2017, 334, 49.
- 68W. Jiang, H. Mashayekhi, B. Xing, Environ. Pollut. 2009, 157, 1619.
- 69D. Cui, P. Zhang, Y. H. Ma, X. He, Y. Y. Li, J. Zhang, Y. C. Zhao, Z. Y. Zhang, Environ. Sci.: Nano 2014, 1, 459.
- 70W. Zhang, C. Musante, J. C. White, P. Schwab, Q. Wang, S. D. Ebbs, X. Ma, Plant Physiol. Biochem. 2017, 110, 185.
- 71M. Amde, J.-F. Liu, Z.-Q. Tan, D. Bekana, Environ. Pollut. 2017, 230, 250.
- 72G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Environ. Sci. Technol. 2012, 46, 6893.