Photoluminenscence Blinking Dynamics of Colloidal Quantum Dots in the Presence of Controlled External Electron Traps
Zhihua Xu
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA
Search for more papers by this authorCorresponding Author
Mircea Cotlet
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA.Search for more papers by this authorZhihua Xu
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA
Search for more papers by this authorCorresponding Author
Mircea Cotlet
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, USA.Search for more papers by this authorAbstract
The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot–bridge–fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well-defined, well-positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi-continuous distribution of ‘on' states and an early fall-off from a power-law distribution for both ‘on' and ‘off' times associated with quantum dot photoluminescence blinking.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_201101643_sm_suppl.pdf213.1 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 A. P. Alivisatos, Science 1996, 271, 933.
- 2 M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Nature 1996, 383, 802.
- 3 P. Frantsuzov, M. Kuno, B. Janko, R. A. Marcus, Nat. Phys. 2008, 4, 519.
- 4 S. Hohng, T. Ha, J. Am. Chem. Soc. 2004, 126, 1324.
- 5 V. Fomenko, D. J. Nesbitt, Nano Lett. 2008, 8, 287.
- 6 Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 5026.
- 7 B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, B. Dubertret, Nat. Mater. 2008, 7, 659.
- 8 X. Y. Wang, X. F. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, T. D. Krauss, Nature 2009, 459, 686.
- 9 A. L. Efros, M. Rosen, Phys. Rev. Lett. 1997, 78, 1110.
- 10 M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, D. J. Nesbitt, J. Chem. Phys. 2001, 115, 1028.
- 11 K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo, M. G. Bawendi, Phys. Rev. B 2001, 6320, 205316.
- 12 R. Verberk, A. M. van Oijen, M. Orrit, Phys. Rev. B 2002, 66, 233203.
- 13 J. Tang, R. A. Marcus, Phys. Rev. Lett. 2005, 95, 107401.
- 14 M. Pelton, G. Smith, N. F. Scherer, R. A. Marcus, Proc. Natl. Acad. Sci. USA 2007, 104, 14249.
- 15 G. Margolin, V. Protasenko, M. Kuno, E. Barkai, Fractals—Part A 2006, 133, 327.
- 16 P. P. Jha, P. Guyot-Sionnest, ACS Nano 2009, 3, 1011.
- 17 J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, Phys. Rev. Lett. 2010, 104, 157403.
- 18 S. Rosen, O. Schwartz, D. Oron, Phys. Rev. Lett. 2010, 104, 157404.
- 19 P. A. Frantsuzov, R. A. Marcus, Phys. Rev. B 2005, 72, 155321.
- 20 X. Y. Wang, L. H. Qu, J. Y. Zhang, X. G. Peng, M. Xiao, Nano Lett. 2003, 3, 1103.
- 21 M. Jones, S. S. Lo, G. D. Scholes, J. Phys. Chem. C 2009, 113, 18632.
- 22 K. L. Knappenberger, D. B. Wong, W. Xu, A. M. Schwartzberg, A. Wolcott, J. Z. Zhang, S. R. Leone, ACS Nano 2008, 2, 2143.
- 23 S. Wang, C. Querner, T. Emmons, M. Drndic, C. H. Crouch, J. Phys. Chem. B 2006, 110, 23221.
- 24 J. Antelman, Y. Ebenstein, T. Dertinger, X. Michalet, S. Weiss, J. Phys. Chem. C 2009, 113, 1 1541.
- 25 N. C. Greenham, X. G. Peng, A. P. Alivisatos, Phys. Rev. B 1996, 54, 17628.
- 26 D. F. Liu, W. Wu, Y. F. Qiu, J. Lu, S. H. Yang, J. Phys. Chem. C 2007, 111, 17713.
- 27 Z. Xu, M. Cotlet, Angew. Chem. Int. Ed. 2011, 50, 6079.
- 28 P. Brown, P. V. Kamat, J. Am. Chem. Soc. 2008, 130, 8890.
- 29 A. Biebersdorf, R. Dietmuller, A. S. Susha, A. L. Rogach, S. K. Poznyak, D. V. Talapin, H. Weller, T. A. Klar, J. Feldmann, Nano Lett. 2006, 6, 1559.
- 30 D. M. Guldi, I. Zilbermann, G. Anderson, N. A. Kotov, N. Tagmatarchis, M. Prato, J. Am. Chem. Soc. 2004, 126, 14340.
- 31 G. Schlegel, J. Bohnenberger, I. Potapova, A. Mews, Phys. Rev. Lett. 2002, 88, 137401.
- 32 K. Zhang, H. Y. Chang, A. H. Fu, A. P. Alivisatos, H. Yang, Nano Lett. 2006, 6, 843.
- 33 A. Issac, S. Y. Jin, T. Q. Lian, J. Am. Chem. Soc. 2008, 130, 1 1280.
- 34 N. H. Song, H. M. Zhu, S. Y. Jin, W. Zhan, T. Q. Lian, ACS Nano 2011, 5, 613.
- 35 S. Y. Jin, T. Q. Lian, Nano Lett. 2009, 9, 2448.
- 36 V. Biju, M. Micic, D. H. Hu, H. P. Lu, J. Am. Chem. Soc. 2004, 126, 9374.
- 37 Y. M. Wang, X. F. Wang, S. K. Ghosh, H. P. Lu, J. Am. Chem. Soc. 2009, 131, 1479.
- 38 a) M. Cotlet, S. Masuo, M. Lor, E. Fron, M. Van der Auweraer, K. Mullen, J. Hofkens, F. De Schryver, Angew. Chem. Int. Ed. 2004, 43, 6116; b) T. D. M. Bell, A. Stefan, S. Masuo, T. Vosch, M. Lor, M. Cotlet, J. Hofkens, S. Bernhardt, K. Mullen, M. van der Auweraer, J. W. Verhoeven, F. C. De Schryver, ChemPhysChem 2005, 6, 942; c) M. Cotlet, S. Masuo, G. B. Luo, J. Hofkens, M. Van der Auweraer, J. Verhoeven, K. Mullen, X. L. S. Xie, F. De Schryver, Proc. Natl. Acad. Sci. USA 2004, 101, 14343.
- 39 R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, M. G. Bawendi, Phys. Rev. Lett. 2000, 85, 3301.
- 40 a) W. B. Davis, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 2001, 123, 7877; b) G. L. Closs, J. R. Miller, Science 1988, 240, 440.
- 41 a) M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, D. J. Nesbitt, J. Chem. Phys. 2000, 112, 3117; b) K. L. Knappenberger, D. B. Wong, Y. E. Romanyuk, S. R. Leone, Nano Lett. 2007, 7, 3869.
- 42 J. J. Peterson, D. J. Nesbitt, Nano Lett. 2009, 9, 338.
- 43 J. Tang, R. A. Marcus, J. Chem. Phys. 2005, 123, 054704.
- 44 S. C. Cui, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 19625.
- 45 R. A. Marcus, Angew. Chem. Int. Ed. Eng. 1993, 32, 1111.
- 46 X. Y. Wu, T. D. M. Bell, E. K. L. Yeow, Angew. Chem. Int. Ed. 2009, 48, 7379.
- 47 M. Hamada, S. Nakanishi, T. Itoh, M. Ishikawa, V. Biju, ACS Nano 2010, 4, 4445.
- 48 J. Tang, J. Chem. Phys. 2008, 129, 084709.
- 49 L. J. Guo, Y. M. Wang, H. P. Lu, J. Am. Chem. Soc. 2010, 132, 1999.
- 50 F. Koberling, A. Mews, T. Basche, Adv. Mater. 2001, 13, 672.
- 51 I. Lamparth, A. Hirsch, J. Chem. Soc.—Chem. Commun. 1994, 1727.
- 52 A. S. Anderson, A. M. Dattelbaum, G. A. Montano, D. N. Price, J. G. Schmidt, J. S. Martinez, W. K. Grace, K. M. Grace, B. I. Swanson, Langmuir 2008, 24, 2240.