An Intrinsically Fluorescent Recognition Ligand Scaffold Based on Chaperonin Protein and Semiconductor Quantum-Dot Conjugates
Hongzhi Xie
Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA)
Search for more papers by this authorYi-Fen Li
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorHiromi K. Kagawa
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorJonathan D. Trent
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorKumara Mudalige
Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA)
Search for more papers by this authorCorresponding Author
Mircea Cotlet
Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA)
Mircea Cotlet, Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA).
Basil I. Swanson, Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA).
Search for more papers by this authorCorresponding Author
Basil I. Swanson
Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA)
Mircea Cotlet, Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA).
Basil I. Swanson, Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA).
Search for more papers by this authorHongzhi Xie
Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA)
Search for more papers by this authorYi-Fen Li
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorHiromi K. Kagawa
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorJonathan D. Trent
Bioengineering Branch, NASA Ames Research Center Moffett Field, CA 94035 (USA)
Search for more papers by this authorKumara Mudalige
Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA)
Search for more papers by this authorCorresponding Author
Mircea Cotlet
Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA)
Mircea Cotlet, Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA).
Basil I. Swanson, Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA).
Search for more papers by this authorCorresponding Author
Basil I. Swanson
Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA)
Mircea Cotlet, Center for Functional Nanomaterials, Brookhaven National Laboratory Mail Stop 735, Upton, NY 11973 (USA).
Basil I. Swanson, Chemistry Division, Los Alamos National Laboratory Mail Stop J567, Los Alamos, NM 87545 (USA).
Search for more papers by this authorAbstract
Genetic engineering of a novel protein–nanoparticle hybrid system with great potential for biosensing applications and for patterning of various types of nanoparticles is described. The hybrid system is based on a genetically modified chaperonin protein from the hyperthermophilic archaeon Sulfolobus shibatae. This chaperonin is an 18-subunit double ring, which self-assembles in the presence of Mg ions and ATP. Described here is a mutant chaperonin (His-β-loopless, HBLL) with increased access to the central cavity and His-tags on each subunit extending into the central cavity. This mutant binds water-soluble semiconductor quantum dots, creating a protein-encapsulated fluorescent nanoparticle. The new bioconjugate has high affinity, in the order of strong antibody–antigen interactions, a one-to-one protein–nanoparticle stoichiometry, and high stability. By adding selective binding sites to the solvent-exposed regions of the chaperonin, this protein–nanoparticle bioconjugate becomes a sensor for specific targets.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200801106_sm_supplfigs.pdf725.9 KB | supplfigs |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. J. Ellis, S. Knapp, P. J. B. Koeck, Z. Fakoor-Biniaz, R. Ladenstein, H. Hebert, J. Struct. Biol. 1998, 123, 30.
- 2 P. J. B. Koeck, H. K. Kagawa, M. J. Ellis, H. Hebert, J. D. Trent, Biochim. Biophys. Acta 1998, 1429, 40.
- 3 M. M. Cheng Cheng, G. Cuda, Y. L. Bunimovich, M. Gaspari, J. R. Heath, H. D. Hill, C. A. Mirkin, A. J. Nijdam, R. Terracciano, T. Thundat, M. Ferrari, Curr. Opin. Chem. Biol. 2006, 10, 11.
- 4 N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
- 5 K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Science 2002, 297, 72.
- 6 L. Jaeger, A. Chworos, Curr. Opin. Struct. Biol. 2006, 16, 531.
- 7 E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. Brien, C. S. Murray, Nature 2006, 439, 55.
- 8 X. J. Zhao, L. R. Hilliard, S. J. Mechery, Y. P. Wang, R. P. Bagwe, S. G. Jin, W. H. Tan, Proc. Natl. Acad. Sci. USA 2004, 101, 15027.
- 9 C. Radloff, R. A. Vaia, J. Brunton, G. T. Bouwer, V. K. Ward, Nano Lett. 2005, 5, 1187.
- 10 A. S. Blum, C. M. Soto, C. D. Wilson, J. L. Whitley, M. H. Moore, K. E. Sapsford, T. W. Lin, A. Chatterji, J. E. Johnson, B. R. Ratna, Nanotechnology 2006, 17, 5073.
- 11 S. W. Lee, S. K. Lee, A. M. Belcher, Adv. Mater 2003, 15, 689.
- 12 S. W. Lee, C. B. Mao, C. E. Flynn, A. M. Belcher, Science 2002, 296, 892.
- 13 R. N. Rajesh, J. S. Sarah, A. Gunjan, E. J. Sharon, O. S. Morley, Nat. Mater. 2002, 1, 169.
- 14 E. Katz, I. Willner, Angew. Chem. Int. Ed. 2004, 43, 6042.
- 15 P. Fortina, L. J. Kricka, S. Surrey, P. Grodainski, Trends Biotechnol. 2005, 23, 168.
- 16 H. K. Kagawa, J. Osipiuk, N. Maltsev, R. Overbeek, E. Quaiterandall, A. Joachimiak, J. D. Trent, J. Mol. Biol. 1995, 253, 712.
- 17 H. K. Kagawa, T. Yaoi, L. Brocchieri, R. A. McMillan, T. Alton, J. D. Trent, Mol. Microbiol. 2003, 48, 143.
- 18 R. Iizuka, T. Yoshida, Y. Shomura, K. Miki, T. Maruyama, M. Odaka, M. Yohda, J. Biol. Chem. 2003, 278, 44959.
- 19 Y. Li, C. D. Paavola, H. K. Kagawa, S. L. Chan, J. D. Trent, Nanotechnology 2007, 18, 455101.
- 20 H. Mattoussi, H. J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, J. Am. Chem. Soc. 2000, 122, 12142.
- 21 I. C. Gunsalus, L. S. Barton, W. Gruber, J. Am. Chem. Soc. 1956, 78, 1763.
- 22 M. Cotlet, P. M. Goodwin, G. S. Waldo, J. H. Werner, ChemPhysChem 2006, 7, 250.
- 23 C. D. Paavola, S. L. Chan, Y. Li, R. A. Mazzarella, J. D. Trent, Nanotechnology 2006, 17, 1171.
- 24 R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, J. D. Trent, Nat. Mater. 2002, 1, 247.
- 25 R. A. McMillan, J. Howard, N. J. Zaluzec, H. K. Kagawa, R. Mogul, Y. F. Li, C. D. Paavola, J. D. Trent, J. Am. Chem. Soc. 2005, 127, 2800.
- 26 I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. M. Mauro, Nat. Mater. 2003, 2, 630.
- 27 I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
- 28 S. Y. Ding, M. Jones, M. P. Tucker, J. M. Nedeljkovic, J. Wall, M. N. Simon, G. Rumbles, M. E. Himmel, Nano Lett. 2003, 3, 1581.
- 29 P. Schwille, S. Kummer, A. A. Heikal, W. E. Moerner,E W. W. Webb, Proc. Natl. Acad. Sci. USA 2000, 97, 151.
- 30 J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, W. W. Webb, Proc. Natl. Acad. Sci. USA 2005, 102, 14284.
- 31 P. A. Frantsuzov, R. A. Marcus, Phys. Rev. B 2005, 72, 155321.
- 32 M. Zhou, I. Ghosh, Biopolymers 2007, 88, 325.