Volume 33, Issue 12 pp. 6932-6949
RESEARCH ARTICLE

Formation encirclement of multiple quadrotors subjected to semi-Markov jump switching topologies under consensus strategy

Mingming Wang

Mingming Wang

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Lin Sun

Lin Sun

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Yuan Ping

Yuan Ping

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Zhenwei Ma

Zhenwei Ma

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Chong Wu

Chong Wu

R&D center, EFY Intelligent Control (Tianjin) Technology Co., Ltd, Tianjin, China

Search for more papers by this author
Jinjin Guo

Jinjin Guo

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Songbo Yuan

Songbo Yuan

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Search for more papers by this author
Juntong Qi

Corresponding Author

Juntong Qi

School of Artificial Intelligence, Shanghai University, Shanghai, China

Correspondence Juntong Qi, School of Artificial Intelligence, Shanghai University, Shanghai 200444, China.

Email: [email protected]

Search for more papers by this author
First published: 28 April 2023

Abstract

This paper focuses on the formation encirclement problem of multiple quadrotors subjected to semi-Markov jump switching topologies under consensus strategy. A target encirclement control algorithm is designed to achieve an enclosed formation, which drives autonomous quadrotors around the target so the target can't get away. Afterward, we propose a decentralized consensus-based control protocol to realize the encirclement of the target quadrotor, where onboard miniature computers carry out all necessary computations. Notably, the quadrotor is modeled by a double integrator and the switching topology is described by a signed graph subjected to the semi-Markov jump process. Whereafter, some criteria in the form of linear matrix inequalities are constructed based on the Lyapunov stability theory to achieve encirclement behavior. Ultimately, the proposed approach is verified by a comparison simulation and two flight experiments with three follower quadrotors enclosing a leader quadrotor.

CONFLICT OF INTEREST STATEMENT

The authors confirm that there is no conflict of interest for this article.

DATA AVAILABILITY STATEMENT

Data sharing is not suitable for the article because no datasets are came into being and analyzed during the currently discuss period.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.