Distributed extremum-seeking based resource allocation algorithm with input dead-zone
Corresponding Author
Xin Cai
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Correspondence Xin Cai, School of Eletrical Engineering, Xinjiang University, Urumpqi, 830047, China.
Email: [email protected]
Search for more papers by this authorXinyuan Nan
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Search for more papers by this authorBinpeng Gao
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Search for more papers by this authorCorresponding Author
Xin Cai
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Correspondence Xin Cai, School of Eletrical Engineering, Xinjiang University, Urumpqi, 830047, China.
Email: [email protected]
Search for more papers by this authorXinyuan Nan
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Search for more papers by this authorBinpeng Gao
School of Eletrical Engineering, Xinjiang University, Urumpqi, China
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 62263031; Natural Science Foundation of Xinjiang Province, Grant/Award Number: 2022D01C694
Summary
This paper studies distributed resource allocation problem for agents with input dead-zone, which is not considered in the existing work. At first, the primal problem is transformed to an auxiliary problem by using the exact penalty method to deal with local inequality constraints. It is assumed that the explicit expressions of cost functions and local inequality constraints are unknown to agents but the values of the cost and constraint functions can be obtained. Under such a setup, the extremum seeking control is used to estimate the gradient information. Thus, to obtain the optimal allocation, a novel distributed algorithm is designed by the virtue of the extremum seeking control and a dynamic compensating mechanism which is used to handle the effects of the input dead-zone. Due to a two time-scale structure of the designed distributed algorithm, the semi-globally practically asymptotical convergence of all agents' decisions to the optimal allocation is obtained by the singular perturbation technique. Finally, numerical examples of economic dispatch in smart grids are given to verify the effectiveness of our proposed method.
CONFLICT OF INTEREST
The authors declare no potential conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- 1Lin X, Shroff NB. Utility maximization for communication networks with multipath routing. IEEE Trans Automat Contr. 2006; 51(5): 766-781. doi:10.1109/TAC.2006.875032
- 2Huang X, Wu K, Jiang M, Huang L, Xu J. Distributed resource allocation for general energy efficiency maximization in offshore miritime device-to-device communication. IEEE Wirel Commun Lett. 2021; 10(6): 1344-1348. doi:10.1109/LWC.2021.3066387
- 3Wang H, Li Y, Qian J. Self-adaptive resource allocation in underwater acoustic interference channel: a reinforcement learning approach. IEEE Internet Things J. 2020; 7(4): 2816-2827. doi:10.1109/JIOT.2019.2962915
- 4 Wang B, Sun S, Ren W. Distributed continuous-time algorithms for optimal resource allocation with time-varying quadratic cost functions. IEEE Trans Control Netw Syst. 2020; 7(4): 1974-1984. doi:10.1109/TCNS.2020.3020972
- 5Wang D, Wang Z, Wen C. Distributed optimal consensus control for a class of uncertain nonlinear multiagent networks with disturbance rejection using adaptive technique. IEEE Trans Syst Man Cybern Syst. 2021; 51(7): 4389-4399. doi:10.1109/TSMC.2019.2933005
- 6Wang D, Chen M, Wang W. Distributed extremum seeking for optimal resource allocation and its application to economic dispatch in smart grids. IEEE Trans Neural Netw Learn Syst. 2019; 30(10): 3161-3171. doi:10.1109/TNNLS.2018.2890115
- 7Wang D, Wang Z, Wen C, Wang W. Second-order continuous-time algorithm for optimal resource allocation in power systems. IEEE Trans Industr Inform. 2019; 15(2): 626-637. doi:10.1109/TII.2018.2881974
- 8Wang Z, Wang D, Wen C, Guo F, Wang W. Push-based distributed economic dispatch in smart grids over time-varying unbalanced directed graphs. IEEE Trans Smart Grid. 2021; 12(4): 3185-3199. doi:10.1109/TSG.2021.3063128
- 9Yi P, Hong Y, Liu F. Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica. 2016; 74: 259-269. doi:10.1016/j.automatica.2016.08.007
- 10Chen G, Li Z. Distributed optimal resource allocation over strongly connected digraphs: a surplus-based approach. Autotmatica. 2021; 125:109459. doi:10.1016/j.automatica.2020.109459
- 11Deng Z. Distributed algorithm design for resource allocation problems of second-order multiagent systems over weight-balanced digraphs. IEEE Trans Syst Man Cybern Syst. 2021; 51(6): 3512-3521. doi:10.1109/TSMC.2019.2930672
- 12Li S, Nian X, Deng Z, Chen Z, Meng Q. Distributed resource allocation of second-order nonlinear multiagent systems. Int J Robust Nonlinear Control. 2021; 31: 5330-5342. doi:10.1002/rnc.5543
- 13Wang B, Fei Q, Wu Q. Distributed time-varying resource allocation optimization based on finite-time consensus approach. IEEE Control Syst Lett. 2021; 5(2): 599-604. doi:10.1109/LCSYS.2020.3004764
10.1109/LCSYS.2020.3004764 Google Scholar
- 14Deng Z, Chen T. Distributed algorithm design for constrained resource allocation problems with high-order multi-agent systems. Automatica. 2022; 144:110492. doi:10.1016/j.automatica.2022.110492
- 15Wang X, Yang S, Guo Z, Lian M, Huang T. A distributed dynamical system for optimal resource allocation over state-dependent networks. IEEE Trans Netw Sci Eng. 2022; 9(4): 2940-2951. doi:10.1109/TNSE.2022.3174098
- 16Lu K, Xu H, Zheng Y. Distributed resource allocation via multi-agent systems under time-varying networks. Automatica. 2022; 136:110059. doi:10.1016/j.automatica.2021.110059
- 17Wei Y, Shang C, Fang H, Zeng X, Dou L, Pardalos P. Sloving a class of nonsmooth resource allocation problems with directed graphs through distributed Lipschitz continuous multi-proximal algorithms. Automatica. 2022; 136:110071. doi:10.1016/j.automatica.2021.110071
- 18Chen G, Guo Z. Initialization-free distributed fixed-time convergent algorithms for optimal resource allocation. IEEE Trans Syst Man Cybern. 2022; 52(2): 845-854. doi:10.1109/TSMC.2020.3005169
10.1109/TSMC.2020.3005169 Google Scholar
- 19Guo Z, Chen G. Distributed dynamic event-triggered and pratical predefined-time resource allocation in cyber-physical systems. Automatica. 2022; 142:110390. doi:10.1016/j.automatica.2022.110390
- 20Guo Z, Lian M, Wen S, Huang T. An adaptive multi-agent system with duplex control laws for distributed resource allocation. IEEE Trans Netw Sci Eng. 2022; 9(2): 389-400. doi:10.1109/TNSE.2021.3117881
- 21Dougherty S, Guay M. An extremum-seeking controller for distributed optimization over sensor networks. IEEE Trans Automat Contr. 2017; 62(2): 928-933. doi:10.1109/TAC.2016.2566806
- 22Khong SZ, Tan Y, Manzie C, Nešić D. Multi-agent source seeking via discrete-time extremum seeking control. Automatica. 2014; 50: 2312-2320. doi:10.1016/j.automatica.2014.06.009
- 23Yu H, Koga S, Oliveira T, Krstić M. Extremum seeking for traffic congestion control with a downstream bottleneck. J Dyn Syst Meas Control-Trans ASME. 2021; 143(3):031007. doi:10.1115/1.4048781
- 24Ye M, Hu G. Distributed extremum seeking for constrained networked optimization and its application to energy consumption control in smart grid. IEEE Trans Control Syst Technol. 2016; 24(6): 2048-2058. doi:10.1109/TCST.2016.2517574
- 25Ariyur KB, Krstić M. Real-Time Optimization by Extremum-Seeking Control. Wiley-Intrescience; 2011.
- 26Tan Y, Nešić D, Mareels I. On the choice of dither in extremum seeking systems: a case study. Automatica. 2008; 44: 1446-1450. doi:10.1016/j.automatica.2007.10.016
- 27Tan Y, Nešić D, Mareels I, Astolfi A. On global extremum seeking in the presence of local extrema. Automatica. 2009; 45: 245-251. doi:10.1016/j.automatica.2008.06.010
- 28Poveda J, Quijano N. Shahshahani gradient-like extremum seeking. Automatica. 2015; 58: 51-59. doi:10.1016/j.automatica.2015.05.002
- 29Ogwuru J, Guay M. Distributed extremum seeking control of multi-agent systems with unknown dynamics for optimal resource allocation. Neurocomput. 2020; 381: 217-226. doi:10.1016/j.neucom.2019.11.086
- 30Geng X, Zhao W. Randomized difference-based gradient-free algorithm for distributed resource allocation. Sci China Inf Sci. 2022; 65(4):142205. doi:10.1007/s11432-020-3147-2
- 31Li J, Gu C, Wu Z, Huang T. Online learning algorithm for distributed convex optimization with time-varying coupled constraints and bandit feedback. IEEE Trans Cybern. 2022; 52(2): 1009-1020. doi:10.1109/TCYB.2020.2990796
- 32 Dai P, Yu W, Chen D. Distributed Q-learning algorithm for dynamic resource allocation with unkonwn objective functions and application to microgrid. IEEE Trans Cybern. 2022; 52(11): 12340-12350. doi:10.1109/TCYB.2021.3082639
- 33He Y, Dong Y, Sun C. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst. 2016; 46(3): 334-344. doi:10.1109/TSMC.2015.2429555
- 34He Y, Wang J, Hao R. Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection. J Syst Sci Complex. 2015; 28(2): 341-359. doi:10.1007/s11424-014-2243-5
- 35Wu X, Meng Z, Cao P, Cai K. A multiple activation anti-windup design for systems with input saturation and dead-zone: experiment on a satellite receiver. Proceedings of the 35th Chinese Control Conference; 2016: 1152-1157.
- 36Shao G, Teel AR, Tan Y, Liu KZ, Wang R. Extremum seeking control with input dead-zone. IEEE Trans Automat Contr. 2020; 65(7): 3184-3190. doi:10.1109/TAC.2019.2946427
- 37Mo L, Yu Y, Zhao L, Cao X. Distributed continuous-time optimization of second-order multiagent systems with nonconvex input constraints. IEEE Trans Syst Man Cybern Syst. 2021; 51(10): 6404-6413. doi:10.1109/TSMC.2019.2961421
- 38Cherukuri A, Cortés J. Distributed generator coordination for initialization and anytime optimization in economic dispatch. IEEE Trans Control Netw Syst. 2015; 2(3): 226-237.
- 39 Wang L, Chen S, Ma K. On the stability and application of extremum seeking control without steady-state oscillation. Automatica. 2016; 68: 18-26. doi:10.1016/j.automatica.2016.01.009
- 40Cai X, Xiao F, Wei B. Distributed generalized Nash equilibrium seeking for noncooperative games with unknown cost functions. Int J Robust Nonlinear Control. 2022; 32: 8948-8964. doi:10.1002/rnc.6314
- 41Khalil H. Nonlinear Systems. 3rd ed. Prentice-Hall; 2002.
- 42Teel AR, Morean L, Nešić D. A unified framework for input-to-state stability in systems with two time scales. IEEE Trans Automat Contr. 2003; 48(8): 1526-1544. doi:10.1109/TAC.2003.816966