Data-driven fault-tolerant control for SISO nonlinear system with unknown sensor fault
Huijin Fan
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorJingtian Han
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Bo Wang
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Correspondence Bo Wang, National Key Laboratory of Science and Technology on Multispectral Information Processing, Huazhong University of Science and Technology, Wuhan, 430074, China.
Email: [email protected]
Search for more papers by this authorHuijin Fan
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorJingtian Han
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Bo Wang
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
Correspondence Bo Wang, National Key Laboratory of Science and Technology on Multispectral Information Processing, Huazhong University of Science and Technology, Wuhan, 430074, China.
Email: [email protected]
Search for more papers by this authorSummary
This paper studies the adaptive fault-tolerant control problem for a general nonlinear discrete-time SISO system with unknown system model and sensor fault. First, utilizing the input-output (I/O) data, an equivalent full-form dynamic linearization (FFDL) data model is to be constructed by introducing a pseudo-gradient vector. Then, to estimate the system's actual output from the sensor measurements corrupted by unknown faults, a nonlinear autoregressive with external input neural network (NARXNN) is employed and well-trained, by which the compensation of the fault signal can hence be derived indirectly. Based on the optimality criterion, an adaptive fault-tolerant control (FTC) strategy is therefore proposed, which promises the convergence of tracking error and the boundedness of system signals. The effectiveness of the proposed FTC algorithm is illustrated by simulation results.
CONFLICT OF INTEREST
The author declares that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- 1Yang J, Shihua L, Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron. 2013; 60(1): 160-169. doi:10.1109/TIE.2012.2183841
- 2Kalman RE. Contribution to the theory of optimal control. Bol. Soc. Mat Mex. 1960; 5: 102-119.
- 3Wang D, He H, Derong L. Adaptive critic nonlinear robust control: a survey. IEEE Trans Cybern. 2017; 47(10): 3429-3451. doi:10.1109/TCYB.2017.2712188
- 4Zhongsheng H, Ronghu C, Gao H. An overview of dynamic-linearization-based data-driven control and applications. IEEE Trans Ind Electron. 2017; 64(5): 4076-4090. doi:10.1109/TIE.2016.2636126
- 5Claudio DP, Pietro T. Formulas for data-driven control: stabilization, optimality, and robustness. IEEE Trans Automat Contr. 2020; 65(3): 909-924. doi:10.1109/TAC.2019.2959924
- 6Hou ZS, Xu J. On data-driven control theory: the state of the art and perspective. Acta Automat Sin. 2009; 35(6): 650-667.
10.3724/SP.J.1004.2009.00650 Google Scholar
- 7Hou ZS. The Parameter Identification, Adaptive Control and Model Free Learning Adaptive Control for Nonlinear System. PhD Thesis. Northeastern University; 1994.
- 8Zhongsheng H, Shangtai J. A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans Control Syst Technol. 2011; 19(6): 1549-1558. doi:10.1109/TCST.2010.2093136
- 9Spall JC. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Automat Contr. 1992; 37(3): 332-341. doi:10.1109/9.119632
- 10Carlos O-M, Ricardo S-P, Fernando B, Ari I. Data-driven fault diagnosis and robust control: application to PEM fuel cell systems. Int J Robust Nonlinear Control. 2018; 28(12): 3713-3727. doi:10.1002/rnc.3820
- 11Johan ÅK, Tore H. PID Controllers: Theory, Design, and Tuning. Instrument Society of America; 1995.
- 12Håkan H. Iterative feedback tuning - an overview. Int J Adapt Control Signal Process. 2002; 16(5): 373-395. doi:10.1002/acs.714
- 13Simone F, Campi MC, Algo C, Savaresi SM. Deterministic continuous-time virtual reference feedback tuning (VRFT) with application to PID design. Syst Control Lett. 2019; 127: 25-34. doi:10.1016/j.sysconle.2019.03.007
- 14Ronghu C, Biao H, Zhongsheng H, Shangtai J. Data-driven high-order terminal iterative learning control with a faster convergence speed. Int J Robust Nonlinear Control. 2018; 28(1): 103-119. doi:10.1002/rnc.3861
- 15Ronghu C, Yu H, Biao H, Zhongsheng H. Adjacent-agent dynamic linearization-based iterative learning formation control. IEEE Trans Cybern. 2020; 50(10): 4358-4369. doi:10.1109/TCYB.2019.2899654
- 16Zhongsheng H, Shuangshuang X. On model-free adaptive control and its stability analysis. IEEE Trans Automat Contr. 2019; 64(11): 4555-4569. doi:10.1109/TAC.2019.2894586
- 17Youmin Z, Jin J. Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Control. 2008; 32(2): 229-252. doi:10.1016/j.arcontrol.2008.03.008
- 18Wang H, Tianyou C, Jinliang D, Martin B. Data driven fault diagnosis and fault tolerant control: some advances and possible new directions. Zidonghua Xuebao/Acta Automat Sin. 2009; 35(6): 739-747. doi:10.3724/SP.J.1004.2009.00739
10.3724/SP.J.1004.2009.00739 Google Scholar
- 19 Wenhai Q, Guangdeng Z, Shun-Feng S. Fault detection for semi-Markov switching systems in the presence of positivity constraints. IEEE Trans Cybern. 2021; 52(12): 13027-13037. doi:10.1109/TCYB.2021.3096948
- 20Linlin L, Luo H, Steven XD, Yang Y, Peng K. Performance-based fault detection and fault-tolerant control for automatic control systems. Automatica. 2019; 99: 308-316. doi:10.1016/j.automatica.2018.10.047
- 21Wang J-S, Yang G-H. Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics. IEEE Trans Ind Electron. 2016; 63(11): 7029-7039. doi:10.1109/TIE.2016.2585559
- 22Wanbing Z, Hao L, Lewis FL. Data-driven fault-tolerant control for attitude synchronization of nonlinear quadrotors. IEEE Trans Automat Contr. 2021; 66(11): 5584-5591. doi:10.1109/TAC.2021.3053194
- 23Wang J-S, Yang G-H. Data-driven approach to accommodating multiple simultaneous sensor faults in variable-gain PID systems. IEEE Trans Ind Electron. 2019; 66(4): 3117-3126. doi:10.1109/TIE.2018.2849999
- 24 Krzysztof P, Maciej P, Kamil K. Sensor fault-tolerant control design for magnetic brake system. Sensors. 2020; 20(16): 4598. doi:10.3390/s20164598
- 25Ding Z, Liwei A, Xiaojian L, Qingling Z. Adaptive fault-tolerant control for nonlinear systems with multiple sensor faults and unknown control directions. IEEE Trans Neural Netw Learn Syst. 2018; 29(9): 4436-4446. doi:10.1109/TNNLS.2017.2766283
- 26Yongming L, Kangkang S, Shaocheng T. Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans Cybern. 2019; 49(2): 649-661. doi:10.1109/TCYB.2017.2785801
- 27 Yongming L, Yanjun L, Shaocheng T. Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints. IEEE Trans Neural Netw Learn Syst. 2021; 33(7): 3131-3145. doi:10.1109/TNNLS.2021.3051030
- 28Genfeng L, Zhongsheng H. RBFNN-based adaptive iterative learning fault-tolerant control for subway trains with actuator faults and speed constraint. IEEE Trans Syst Man Cybern: Syst. 2021; 51(9): 5785-5799. doi:10.1109/TSMC.2019.2957299
- 29Wang Z, Lei L, Huaguang Z. Neural network-based model-free adaptive fault-tolerant control for discrete-time nonlinear systems with sensor fault. IEEE Trans Syst Man Cybern Syst. 2017; 47(8): 2351-2362. doi:10.1109/TSMC.2017.2672664
- 30 Shuangshuang X, Zhongsheng H. Data-driven formation control for unknown MIMO nonlinear discrete-time multi-agent systems with sensor fault. IEEE Trans Neural Netw Learn Syst. 2021; 33(12): 7728-7742. doi:10.1109/TNNLS.2021.3087481
- 31Jingwei L, Tianyue L, Zheyu Z, Jiaming C. NARX prediction-based parameters online tuning method of intelligent PID system. IEEE Access. 2020; 8: 130922-130936. doi:10.1109/ACCESS.2020.3007848
- 32Aytac A, Ozgur A, Rifat H. Real-time control based on NARX neural network of hexarotor UAV with load transporting system for path tracking. Paper presented at: 2018 6th International Conference on Control Engineering & Information Technology (CEIT); 2018.
- 33Zhongsheng H, Shangtai J. Model Free Adaptive Control: Theory and Applications. CRC Press; 2013.
- 34Wang YQ, Zhou DH, Qin SJ, Wang H. Active fault-tolerant control for a class of nonlinear systems with sensor faults. Int J Control Autom Syst. 2008; 6(3): 339-350.
- 35Ahmed AA, Mahmood HK. A review of Fault Tolerant Control Systems: Advancements and applications. Measurement. 2019; 143: 58-68. doi:10.1016/j.measurement.2019.04.083
- 36Shen Y, Yang H, Okyay K. Sliding mode observer-based FTC for Markovian jump systems with actuator and sensor faults. IEEE Trans Automat Contr. 2017; 62(7): 3551-3558. doi:10.1109/TAC.2017.2669189
- 37Inseok H, Sungwan K, Youdan K, Eng SC. A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans Control Syst Technol. 2010; 18(3): 636-653. doi:10.1109/TCST.2009.2026285
- 38Ngoc SN, Cao Van K, Huy AHP. A novel adaptive feed-forward-PID controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on neural network and modified differential evolution algorithm. Rob Auton Syst. 2017; 96: 65-80. doi:10.1016/j.robot.2017.06.012
- 39Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw. 1994; 5(6): 989-993. doi:10.1109/72.329697
- 40Eloy I, Miguel P. Numerical bounds to assure initial local stability of NARX multilayer perceptrons and radial basis functions. Neurocomput. 2008; 72(1): 539-547. doi:10.1016/j.neucom.2007.11.018
- 41Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst. 1989; 2(4): 303-314. doi:10.1007/BF02551274
10.1007/BF02551274 Google Scholar
- 42Ibrahim JE. Theory and Application of the z-Transform Method. Wiley; 1964.
- 43Peter B. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press; 1970.
- 44Bell HE. Gershgorin's theorem and the zeros of polynomials. Am Math Mon. 1965; 72: 292.