Ginger polysaccharide promotes myeloid-derived suppressor cell apoptosis by regulating lipid metabolism
Yufei Ji
Xicheng District Youth Science and Technology centre, Beijing, China
Search for more papers by this authorCorresponding Author
Ning Tao
Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Correspondence
Ning Tao, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Email: [email protected]
Search for more papers by this authorYufei Ji
Xicheng District Youth Science and Technology centre, Beijing, China
Search for more papers by this authorCorresponding Author
Ning Tao
Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Correspondence
Ning Tao, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Email: [email protected]
Search for more papers by this authorAbstract
Recently, targeting myeloid-derived suppressor cells (MDSCs) which mainly play an immunosuppressive role in tumor microenvironment has become a hot spot in tumor immunotherapy. This study focuses on biological effect of ginger polysaccharide extracted from natural plants on promoting apoptosis of MDSCs by regulating lipid metabolism. An MTT assay was used to detect the inhibitory effect of ginger polysaccharide on the growth of an MDSC-like cell line (MSC-2). The apoptosis-promoting effect of ginger polysaccharide on MSC-2 cells was detected by flow cytometry. Expression levels of apoptosis proteins (caspase 9 and Bcl-2) and lipid metabolism enzymes (fatty acid synthase (FASN) and diacylglycerol acyltransferase 2) in MSC-2 cells treated with different concentrations of ginger polysaccharide were detected by western blot assay. Nile red staining was used to quantitatively detect the effect of ginger polysaccharide on lipid droplet synthesis. Ginger polysaccharide inhibited proliferation of MSC-2 cells and promoted their apoptosis by upregulating pro-apoptotic caspase 9 protein, downregulating anti-apoptotic Bcl-2 protein, inhibiting expression of FASN and diacylglycerol acyltransferase 2 (key enzymes in fatty acid synthesis and lipid droplet formation, respectively). Ginger polysaccharide promoted apoptosis of MDSCs by regulating key lipid metabolism enzymes, inhibiting fatty acid synthesis and lipid droplet accumulation, and reducing the energy supply of cells.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from thecorresponding author upon reasonable request.
REFERENCES
- Al-Khami, A. A., Zheng, L., Del Valle, L., Hossain, F., Wyczechowska, D., Zabaleta, J., Sanchez, M. D., Dean, M. J., Rodriguez, P. C., & Ochoa, A. C. (2017). Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology, 6(10), e1344804.
- Allan, L. A., & Clarke, P. R. (2009). Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. The FEBS Journal, 276(21), 6063–6073. https://doi.org/10.1111/j.1742-4658.2009.07330.xEJB7330
- Buckley, D., Duke, G., Heuer, T. S., O'Farrell, M., Wagman, A. S., McCulloch, W., & Kemble, G. (2017). Fatty acid synthase - modern tumor cell biology insights into a classical oncology target. Pharmacology & Therapeutics, 177, 23–31. https://doi.org/10.1016/j.pharmthera.2017.02.021
- Chavez-Galan, L., Sada-Ovalle, I., Baez-Saldana, R., Chavez, R., & Lascurain, R. (2012). Monocytes from tuberculosis patients that exhibit cleaved caspase 9 and denaturalized cytochrome c are more susceptible to death mediated by toll-like receptor 2. Immunology, 135(4), 299–311. https://doi.org/10.1111/j.1365-2567.2011.03543.x
- Clements, V. K., Long, T., Long, R., Figley, C., Smith, D. M. C., & Ostrand-Rosenberg, S. (2018). Frontline science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. Journal of Leukocyte Biology, 103(3), 395–407. https://doi.org/10.1002/JLB.4HI0517-210R
- den Brok, M. H., Raaijmakers, T. K., Collado-Camps, E., & Adema, G. J. (2018). Lipid droplets as immune modulators in myeloid cells. Trends IN Immunology, 39(5), 380–392.
- Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167. https://doi.org/10.1038/168167a0
- Gonda, K., Shibata, M., Ohtake, T., Matsumoto, Y., Tachibana, K., Abe, N., Ohto, H., Sakurai, K., & Takenoshita, S. (2017). Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncology Letters, 14(2), 1766–1774. https://doi.org/10.3892/ol.2017.6305OL-0-0-6305
- Harris, C. A., Haas, J. T., Streeper, R. S., Stone, S. J., Kumari, M., Yang, K., Han, X., Brownell, N., Gross, R. W., Zechner, R., & Farese, R. V., Jr. (2011). DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research, 52(4), 657–667. https://doi.org/10.1194/jlr.M013003S0022-2275(20)40900-9
- He, W., Zhang, W., Zheng, Q., Wei, Z., Wang, Y., Hu, M., Ma, F., Tao, N., & Luo, C. (2019). Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4. Oncology Letters, 18(3), 2420–2426. https://doi.org/10.3892/ol.2019.10544OL-0-0-10544
- Li, Y., Tran, V. H., Duke, C. C., & Roufogalis, B. D. (2012). Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evidence-Based Complementary and Alternative Medicine, 2012, 516870. https://doi.org/10.1155/2012/516870
- Liu, W., Song, H., Li, X., Ren, D., Ding, S., & Li, Y. (2021). Lipid metabolism in tumor-associated myeloid-derived suppressor cells. Advances in Experimental Medicine and Biology, 1316, 103–115. https://doi.org/10.1007/978-981-33-6785-2_7
- Loo, G. v., Schotte, P., Gurp, M. v., Demol, H., Hoorelbeke, B., Gevaert, K., Rodriguez, I., Ruiz-Carrillo, A., Vandekerckhove, J., Declercq, W., Beyaert, R., & Vandenabeele, P. (2001). Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death and Differentiation, 8(12), 1136–1142. https://doi.org/10.1038/sj.cdd.4400944
- Malek, E., de Lima, M., Letterio, J. J., Kim, B. G., Finke, J. H., Driscoll, J. J., & Giralt, S. A. (2016). Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Reviews, 30(5), 341–348. https://doi.org/10.1016/j.blre.2016.04.002S0268-960X(16)30010-8
- Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Food, 8(6), 1–21. https://doi.org/10.3390/foods8060185foods8060185
- Oorni, K., Rajamaki, K., Nguyen, S. D., Lahdesmaki, K., Plihtari, R., Lee-Rueckert, M., & Kovanen, P. T. (2015). Acidification of the intimal fluid: The perfect storm for atherogenesis. Journal of Lipid Research, 56(2), 203–214. https://doi.org/10.1194/jlr.R050252S0022-2275(20)35607-8
- Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181(1), 435–440. https://doi.org/10.1084/jem.181.1.435
- Pergamo, M., & Miller, G. (2016). Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Therapy, 24(3), 100–105.
- Rosa, A., Caprioglio, D., Isola, R., Nieddu, M., Appendino, G., & Falchi, A. M. (2019). Dietary zerumbone from shampoo ginger: New insights into its antioxidant and anticancer activity. Food & Function, 10(3), 1629–1642. https://doi.org/10.1039/c8fo02395f
- Sayed, S., Ahmed, M., El-Shehawi, A., Alkafafy, M., Al-Otaibi, S., El-Sawy, H., Farouk, S., & El-Shazly, S. (2020). Ginger water reduces body weight gain and improves energy expenditure in rats. Food, 9(1), 1–14. https://doi.org/10.3390/foods9010038foods9010038
- Siddiqui, S., & Glauben, R. (2022). Fatty acid metabolism in myeloid-derived suppressor cells and tumor-associated macrophages: Key factor in cancer immune evasion. Cancers, 14(1), 1–14. https://doi.org/10.3390/cancers14010250cancers14010250
- Tavazoie, M. F., Pollack, I., Tanqueco, R., Ostendorf, B. N., Reis, B. S., Gonsalves, F. C., Kurth, I., Andreu-Agullo, C., Derbyshire, M. L., Posada, J., Takeda, S., Tafreshian, K. N., Rowinsky, E., Szarek, M., Waltzman, R. J., Mcmillan, E. A., Zhao, C., Mita, M., Mita, A., … Tavazoie, S. F. (2018). LXR/ApoE activation restricts innate immune suppression in cancer. Cell, 172(4), 825–840 e818. https://doi.org/10.1016/j.cell.2017.12.026
- Veglia, F., Tyurin, V. A., Blasi, M., De Leo, A., Kossenkov, A. V., Donthireddy, L., To, T. K. J., Schug, Z., Basu, S., Wang, F., Ricciotti, E., DiRusso, C., Murphy, M. E., Vonderheide, R. H., Lieberman, P. M., Mulligan, C., Nam, B., Hockstein, N., Masters, G., … Gabrilovich, D. I. (2019). Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature, 569(7754), 73–78. https://doi.org/10.1038/s41586-019-1118-210.1038/s41586-019-1118-2
- Waldron, T. J., Quatromoni, J. G., Karakasheva, T. A., Singhal, S., & Rustgi, A. K. (2013). Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology, 2(4), e24117. https://doi.org/10.4161/onci.241172012ONCOIMM0032R
- Wang, T. F., Wang, H., Peng, A. F., Luo, Q. F., Liu, Z. L., Zhou, R. P., Gao, S., Zhou, Y., & Chen, W. Z. (2013). Inhibition of fatty acid synthase suppresses U-2 OS cell invasion and migration via downregulating the activity of HER2/PI3K/AKT signaling pathway in vitro. Biochemical and Biophysical Research Communications, 440(2), 229–234. https://doi.org/10.1016/j.bbrc.2013.09.024S0006-291X(13)01495-2
- Wang, Y., Wang, S., Song, R., Cai, J., Xu, J., Tang, X., & Li, N. (2019). Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. International Journal of Biological Macromolecules, 123, 81–90. https://doi.org/10.1016/j.ijbiomac.2018.10.169
- Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: A perfect storm for cancer progression. Nature Reviews. Cancer, 11(9), 671–677. https://doi.org/10.1038/nrc3110nrc3110
- Wu, H., Weidinger, C., Schmidt, F., Keye, J., Friedrich, M., Yerinde, C., & Glauben, R. (2017). Oleate but not stearate induces the regulatory phenotype of myeloid suppressor cells. Scientific Reports, 7(1), 7498. https://doi.org/10.1038/s41598-017-07685-9
- Wu, M.-H., Jin, X.-K., Yu, A.-Q., Zhu, Y.-T., Li, D., Li, W.-W., & Wang, Q. (2014). Caspase-mediated apoptosis in crustaceans: Cloning and functional characterization of EsCaspase-3-like protein from Eriocheir. Fish & Shellfish Immunology, 41(2), 625–632. https://doi.org/10.1016/j.fsi.2014.10.017
- Xu, Y., & Cai, L. (2018). L-mimosine induces caspase-9-mediated apoptosis in human osteosarcoma cells. Molecular Medicine Reports, 17(3), 4695–4701. https://doi.org/10.3892/mmr.2018.8403
- Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., & Wang, X. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132. https://doi.org/10.1126/science.275.5303.1129
- Yu, J., Ji, H., Yang, Z., & Liu, A. (2019). Relationship between structural properties and antitumor activity of Astragalus polysaccharides extracted with different temperatures. International Journal of Biological Macromolecules, 124, 469–477. https://doi.org/10.1016/j.ijbiomac.2018.11.156
- Zhang, W., He, W., Shi, X., Li, X., Wang, Y., Hu, M., Ma, F., Tao, N., Wang, G., & Qin, Z. (2018). An asparagus polysaccharide fraction inhibits MDSCs by inducing apoptosis through toll-like receptor 4. Phytotherapy Research, 32(7), 1297–1303. https://doi.org/10.1002/ptr.6058
- Zhao, X., Rong, L., Li, X., Liu, X., Deng, J., Wu, H., Xu, X., Erben, U., Wu, P., Syrbe, U., Sieper, J., & Qin, Z. (2012). TNF signaling drives myeloid-derived suppressor cell accumulation. The Journal of Clinical Investigation, 122(11), 4094–4104. https://doi.org/10.1172/JCI6411564115