Solar-Blind Deep-Ultraviolet Photoconductive Detector Based on Amorphous Ga2O3 Thin Films for Corona Discharge Detection
Xudong Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorFengyun Xu
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorXuan Wang
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorJiangshuai Luo
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorKe Ding
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorLiyu Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHonglin Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorYuanqiang Xiong
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorPeng Yu
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorChunyang Kong
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Lijuan Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Hong Zhang
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Wanjun Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorXudong Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorFengyun Xu
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorXuan Wang
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorJiangshuai Luo
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorKe Ding
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorLiyu Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHonglin Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorYuanqiang Xiong
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorPeng Yu
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorChunyang Kong
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Lijuan Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Hong Zhang
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Wanjun Li
Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorAbstract
A low-cost, high-efficiency corona discharge detection method is important in ensuring the safety of high-voltage transmission systems. High-sensitivity solar-blind deep-ultraviolet (SBDU) photodetectors (PD) have obvious advantages in corona discharge detection. Herein, a fully transparent SBDU photoconductive detector with indium tin oxide (ITO) transparent electrodes is successfully constructed based on amorphous Ga2O3 (a-Ga2O3) thin films. The device demonstrates an ultra-high responsivity of 1.3 × 104 A W−1, a detectivity of 3.2 × 1014 Jones, and an external quantum efficiency of 6.7 × 106%. In addition, the capability of the ultra-sensitive fully transparent photoconductive detector is investigated in terms of corona discharge detection. It is established that the device detection distance limit for simulated corona discharge detection is up to 70 cm, that is, the device can effectively detect extremely weak solar-blind deep-ultraviolet signals below 204 pW cm−2. A proof-of-concept for the future application of easily-integrated fully transparent amorphous Ga2O3 photoconductive detectors with low manufacturing costs in high-voltage corona discharge detection is provided.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
pssr202200512-sup-0001-SuppData-S1.zip21.3 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
S. A. Boggs, IEEE Electr. Insul. Mag. 1990, 6, 33.
10.1109/57.63057 Google Scholar
- 2 H. Ha, S. Han, J. Lee, IEEE Trans. Instrum. Meas. 2011, 61, 267.
- 3 H. D. Ilkhechi, M. H. Samimi, R. Yousefvand, Int. J. Electr. Power Energy Syst. 2019, 113, 906.
- 4 S.H. Wang, F.C. Lv, Y.P. Liu, IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1697.
- 5 P. Feng, J. Y. Zhang, Q. H. Li, T. H. Wang, Appl. Phys. Lett. 2006, 88, 153107.
- 6 R. Suzuki, S. Nakagomi, Y. Kokubun, Appl. Phys. Lett. 2011, 98, 131114.
- 7 H.J. Fang, H.L. Ma, C. Zheng, S. Lenmon, W.T. Wu, L.L. Wu, H. Wang, Appl. Surf. Sci. 2020, 529, 147122.
- 8 S.R. Zhou, H. Zhang, X. Peng, H.W. Liu, H.L. Li, Y.Q. Xiong, W.J. Li, P.A. Yang, L.J. Ye, C.Y. Kong, Adv. Photonics Res. 2022, 3, 2200192.
- 9 H.W. Liu, S.R. Zhou, H. Zhang, L.J. Ye, Y.Q. Xiong, P. Yu, W.J. Li, X. Yang, H.L. Li, C.Y. Kong, J. Phys. D Appl. Phys. 2022, 55, 305104.
- 10 R. McClintock, A. Yasan, K. Minder, P. Kung, M. Razeghi, Appl. Phys. Lett. 2005, 87, 241123.
- 11 X. Chen, K.W. Liu, Z.Z. Zhang, C.R. Wang, B.H. Li, H.F. Zhao, D.X. Zhao, D.Z. Shen, ACS Appl. Mater. Interfaces 2016, 8, 4185.
- 12 T. Tut, T. Yelboga, E. Ulker, E. Ozbay, Appl. Phys. Lett. 2008, 92, 103502.
- 13 R. Roy, V. G. Hill, E. F. Osbor, J. Am. Chem. Soc. 1952, 74, 719.
- 14 L.X. Qian, Z.W. Gu, X.D. Huang, H.Y. Liu, Y.J. Lv, Z.H. Feng, W.L. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 40837.
- 15 Y.Q. Huang, Z. Liu, J. Wang, Y.S. Zhi, D.Y. Guo, X. Wang, X.L. Wang, Z.W. Chen, P.G. Li, W.H. Tang, ECS J. Solid State Sci. Technol. 2020, 9, 055010.
- 16 Y.T. Zhong, Y.L. Hu, H. Mo, Z.R. Wu, X. Fu, L.Q. Zhou, H.Y. Liu, L. Li, X.G. Liu, Electrochim. Acta 2022, 408, 139935.
- 17 Y. Qin, L.H. Li, X.L. Zhao, G. S. Tompa, H. Dong, G.Z. Jian, Q.M. He, P.J. Tan, X.H. Hou, Z.F. Zhang, S.J. Yu, H.D. Sun, G. W. Xu, X.S. Miao, K.H. Xue, S.B. Long, M. Liu, ACS Photonics 2020, 7, 812.
- 18 Y. Qin, L.H. Li, Z.A. Yu, F.H. Wu, D.N. Dong, W. Guo, Z.F. Zhang, J.H. Yuan, K.H. Xue, X.S. Miao, S.B. Long, Adv. Sci. 2021, 8, 2101106.
- 19 J. Wang, L.J. Ye, X. Wang, H. Zhang, L. Li, C.Y. Kong, W.J. Li, J. Alloys Compd. 2019, 803, 9.
- 20 L.j. Huang, Z.R. Hu, H. Zhang, Y.Q. Xiong, S.Q. Fan, C.Y. Kong, W.J. Li, L.J. Ye, H.L. Li, J. Mater. Chem. C 2021, 9, 10354.
- 21 Z.Y. Han, H.L. Liang, W.X. Huo, X.S. Zhu, X.L. Du, Z.X. Mei, Adv. Opt. Mater. 2020, 8, 1901833.
- 22 X.H. Hou, X.L. Zhao, Y. Zhang, Z.F. Zhang, Y. Liu, Y. Qin, P.J. Tan, C. Chen, S.J. Yu, M.F. Ding, G.W. Xu, Q. Hu, S.B. Long, Adv. Mater. 2022, 34, 2106923.
- 23 S.J. Cui, Z.X. Mei, Y.H. Zhang, H.L. Liang, X.L. Du, Adv. Opt. Mater. 2017, 5, 1700454.
- 24 Y. Qin, S.b. Long, Q.m. He, H. Dong, G.Z. Jian, Y. Zhang, X.H. Hou, P.J. Tan, Z.F. Zhang, Y.J. Lu, C.X. Shan, J.L. Wang, W.D. Hu, H.B. Lv, Q. Liu, M. Liu, Adv. Electron. Mater. 2019, 5, 1900389.
- 25 L.X. Xiong, L. Zhang, Q.P. Lv, T. Li, W.Q. Song, J.W. Si, W.H. Zhu, L.C. Wang, Semicond. Sci. Technol. 2021, 36, 045010.
- 26 J. Bae, D.W. Jeon, J.H. Park, J. Vac. Sci. Technol. A 2021, 39, 033410.
- 27 H.T. Zhou, L.J. Cong, J.G. Ma, B.S. Li, M.Z. Chen, H.Y. Xu, Y.C. Liu, J. Mater. Chem. C 2019, 7, 13149.
- 28 S. Li, D.Y. Guo, P.G. Li, X. Wang, Y.H. Wang, Z.Y. Yan, Z. Liu, Y.S. Zhi, Y.Q. Huang, Z.P. Wu, W.H. Tang, ACS Appl. Mater. Interfaces 2019, 11, 35105.
- 29 D.Y. Guo, Y.L. Su, H.Z. Shi, P.G. Li, N. Zhao, J.H. Ye, S.L. Wang, A.P. Liu, Z.W. Chen, C.R. Li, W.H. Tang, ACS Nano 2018, 12, 12827.
- 30 Y.H. Wang, Y.Q. Tang, H.R. Li, Z.B. Yang, Q.Y. Zhang, Z.B. He, X. Huang, X.H. Wei, W.H. Tang, W. Huang, Z.P. Wu, ACS Photonics 2021, 8, 2256.
- 31 D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, W. H. Tang, Appl. Phys. Lett. 2014, 105, 023507.
- 32
P. Klein, M. Hirth, S. Gröber, J. Kuhn, A. Müller, Phys. Educ. 2014, 49, 412.
10.1088/0031-9120/49/4/412 Google Scholar
- 33 S.H. Lee, S.B. Kim, Y.J. Moon, S.M. Kim, H.J. Jung, M.S. Seo, K.M. Lee, S.K. Kim, S.W. Lee, ACS Photonics 2017, 4, 2937.
- 34 L.X. Qian, Z.H. Wu, Y.Y. Zhang, P.T. Lai, X.Z. Liu, Y.R. Li, ACS Photonics 2017, 4, 2203.
- 35 Y.F. Zhang, X.H. Chen, Y. Xu, F.F. Ren, S.L. Gu, R. Zhang, Y.D. Zheng, J. D. Ye, Chin. Phys. B 2019, 28, 028501.
- 36 S. Oh, C.K. Kim, J. Kim, ACS Photonics 2017, 5, 1123.
- 37 Z.X. Jiang, Z.Y. Wu, C.C. Ma, J.A. Deng, H. Zhang, Y. Xu, J.D. Ye, Z.L. Fang, G.Q. Zhang, J.Y. Kang, T.Y. Zhang, Mater. Today Phys. 2020, 14, 100226.
- 38 J. Wang, Y.Q. Xiong, L.J. Ye, W.J. Li, G.P. Qin, H.B. Ruan, H. Zhang, L. Fang, C.Y. Kong, H.L. Li, Opt. Mater. 2021, 112, 110808.
- 39 K. Arora, N. Goel, M. Kumar, M. Kumar, ACS Photonics 2018, 5, 2391.
- 40 J.G. Yu, J.S. Lou, Z. Wang, S.W. Ji, J.J. Chen, M. Yu, B. Peng, Y.F. Hu, L. Yuan, Y.M. Zhang, R.X. Jia, J. Alloys Compd. 2021, 872, 159508.
- 41 S.R. Zhou, X. Peng, H.W. Liu, Z.F. Zhang, L.J. Ye, H.L. Li, Y.Q. Xiong, L.B. Niu, F.L. Chen, L. Fang, C.Y. Kong, W.J. Li, X. Yang, H. Zhang, Opt. Mater. Express 2022, 12, 327.
- 42 Z. Liu, Y.Q. Huang, C. Zhang, J. Wang, H.r. Li, Z.P. Wu, P.G. Li, W.H. Tan, J. Phys. D: Appl. Phys. 2020, 53, 295109.
- 43 X. Cao, Y.H. Xing, J. Han, J.S. Li, T. He, X.D. Zhang, J.H. Zhao, B.S. Zhang, Mater. Sci. Semicond. Process. 2021, 123, 105532.