Lattice-Asymmetry-Driven Selective Area Sublimation: A Promising Strategy for III-Nitride Nanostructure Tailoring
Shanshan Sheng
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorDuo Li
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorPing Wang
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorTao Wang
Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorFang Liu
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorZhaoying Chen
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorRenchun Tao
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorWeikun Ge
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorBo Shen
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorCorresponding Author
Xinqiang Wang
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871 P. R. China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 P. R. China
Search for more papers by this authorShanshan Sheng
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorDuo Li
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorPing Wang
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorTao Wang
Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorFang Liu
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorZhaoying Chen
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorRenchun Tao
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorWeikun Ge
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorBo Shen
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorCorresponding Author
Xinqiang Wang
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 P. R. China
Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871 P. R. China
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010 P. R. China
Search for more papers by this authorAbstract
Lattice-asymmetry-driven selective area sublimation (SAS) process of GaN is systemically investigated by exploring the in situ dynamic evolution of the decomposition pathway under ultra-high vacuum. The rationale of the SAS is confirmed as a strong anisotropic decomposition driven by lattice-asymmetry of wurtzite crystal: the sublimation preferably starts along the -c axis due to the relatively lower decomposition energy barrier. Finally, the fabrication of site- and size-controlled GaN nanowires has been achieved by utilizing the SAS process, exhibiting good controllability on the sidewall of nanowires. These findings shed light on the thermodynamic mechanism of the lattice-asymmetry-driven sublimation process in III-nitrides, providing an efficient alternative approach for the tailoring of semiconductor micro/nanostructures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1H. N. Khan, D. A. Hounshell, E. R. H. Fuchs, Nat. Electron. 2018, 1, 14.
- 2C. P. Anderson, A. Bourassa, K. C. Miao, G. Wolfowicz, P. J. Mintun, A. L. Crook, H. Abe, J. Ul Hassan, N. T. Son, T. Ohshima, D. D. Awschalom, Science 2019, 366, 1225.
- 3A. Yamamura, S. Watanabe, M. Uno, M. Mitani, C. Mitsui, J. Tsurumi, N. Isahaya, Y. Kanaoka, T. Okamoto, J. Takeya, Sci. Adv. 2018, 4, eaao5758.
- 4P.-M. Coulon, P. Feng, B. Damilano, S. Vézian, T. Wang, P. A. Shields, Sci. Rep. 2020, 10, 5642.
- 5G. Burkard, M. J. Gullans, X. Mi, J. R. Petta, Nat. Rev. Phys. 2020, 2, 129.
10.1038/s42254-019-0135-2 Google Scholar
- 6E. Barrigón, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson, Chem. Rev. 2019, 119, 9170.
- 7N.-K. Nguyen, T. Nguyen, T.-K. Nguyen, S. Yadav, T. Dinh, M. K. Masud, P. Singha, T. N. Do, M. J. Barton, H. T. Ta, N. Kashaninejad, C. H. Ooi, N.-T. Nguyen, H.-P. Phan, ACS Appl. Electron. Mater. 2021, 3, 1959.
- 8Y. Guo, H. Zhu, Q. Wang, ACS Appl. Mater. Interfaces 2019, 11, 1033.
- 9Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, ACS Appl. Mater. Interfaces 2013, 5, 2111.
- 10H. Liang, A. Martins, B.-H. V. Borges, J. Zhou, E. R. Martins, J. Li, T. F. Krauss, Optica 2019, 6, 1461.
- 11F. Olivier, A. Daami, C. Licitra, F. Templier, Appl. Phys. Lett. 2017, 111, 022104.
- 12X. Sun, P. Wang, T. Wang, L. Chen, Z. Chen, K. Gao, T. Aoki, M. Li, J. Zhang, T. Schulz, M. Albrecht, W. Ge, Y. Arakawa, B. Shen, M. Holmes, X. Wang, Light Sci. Appl. 2020, 9, 159.
- 13B. Damilano, S. Vézian, J. Massies, Opt. Express 2017, 25, 33243.
- 14B. Damilano, S. Vézian, J. Massies, Phys.Status Solidi B 2018, 255, 1700392.
10.1002/pssb.201700392 Google Scholar
- 15S. Sergent, B. Damilano, S. Vézian, S. Chenot, T. Tsuchizawa, M. Notomi, Appl. Phys. Lett. 2020, 116, 223101.
- 16N. Thi Huong, R. Comyn, S. Chenot, J. Brault, B. Damilano, S. Vézian, E. Frayssinet, F. Cozette, C. Rodriguez, N. Defrance, F. Lecourt, N. Labat, H. Maher, Y. Cordier, Semicond. Sci. Technol. 2020, 36, 024001.
- 17G. Brière, P. Ni, S. Héron, S. Chenot, S. Vézian, V. Brändli, B. Damilano, J. Y. Duboz, M. Iwanaga, P. Genevet, Adv. Opt. Mater. 2019, 7, 1801271.
- 18S. Fernández-Garrido, T. Auzelle, J. Lähnemann, K. Wimmer, A. Tahraoui, O. Brandt, Nanoscale Adv. 2019, 1, 1893.
- 19B. Damilano, S. Vezian, J. Brault, B. Alloing, J. Massies, Nano Lett. 2016, 16, 1863.
- 20P. Wang, T. Wang, H. Wang, X. Sun, P. Huang, B. Sheng, X. Rong, X. Zheng, Z. Chen, Y. Wang, D. Wang, H. Liu, F. Liu, L. Yang, D. Li, L. Chen, X. Yang, F. Xu, Z. Qin, J. Shi, T. Yu, W. Ge, B. Shen, X. Wang, Adv. Funct. Mater. 2019, 29, 1902608.
- 21L. Chen, B. W. Sheng, S. S. Sheng, P. Wang, X. X. Sun, D. Li, T. Wang, R. C. Tao, S. F. Liu, Z. Y. Chen, W. K. Ge, B. Shen, X. Q. Wang, Adv. Funct. Mater. 2022, 32, 2208340.
- 22D. Li, S. Liu, Z. Qian, Q. Liu, K. Zhou, D. Liu, S. Sheng, B. Sheng, F. Liu, Z. Chen, Adv. Mater. 2022, 34, 2109765.
- 23B. Damilano, P. M. Coulon, S. Vezian, V. Brandli, J. Y. Duboz, J. Massies, P. A. Shields, Appl. Phys. Express 2019, 12, 045007.
- 24S. Nitta, M. Kariya, T. Kashima, S. Yamaguchi, H. Amano, I. Akasaki, Appl. Surf. Sci. 2000, 159, 421.
- 25S. Sheng, T. Wang, S. Liu, F. Liu, B. Sheng, Y. Yuan, D. Li, Z. Chen, R. Tao, L. Chen, Adv. Sci. 2022, 9, 2106028.
- 26V. Ramachandran, R. M. Feenstra, W. L. Sarney, L. Salamanca-Riba, J. E. Northrup, L. T. Romano, D. W. Greve, Appl. Phys. Lett. 1999, 75, 808.
- 27M. Sobanska, K. Klosek, Z. R. Zytkiewicz, J. Borysiuk, B. S. Witkowski, E. Lusakowska, A. Reszka, R. Jakiela, Cryst. Res. Technol. 2012, 47, 307.
- 28A. Urban, J. Malindretos, J. H. Klein-Wiele, P. Simon, A. Rizzi, New J. Phys. 2013, 15, 053045.
- 29W. Bergbauer, M. Strassburg, C. Kolper, N. Linder, C. Roder, J. Lahnemann, A. Trampert, S. Fundling, S. F. Li, H. H. Wehmann, A. Waag, Nanotechnology 2010, 21, 305201.
- 30K. Hestroffer, B. Daudin, Phys. Status Solidi RRL 2013, 7, 835.
- 31M. Knelangen, V. Consonni, A. Trampert, H. Riechert, Nanotechnology 2010, 21, 245705.
- 32P. Wang, Y. Yuan, C. Zhao, X. Wang, X. Zheng, X. Rong, T. Wang, B. Sheng, Q. Wang, Y. Zhang, Nano Lett. 2016, 16, 1328.
- 33D. Radić, M. Peterlechner, H. Bracht, Microsc. Microanal. 2021, 27, 828.
- 34H. Tsurusawa, N. Nakanishi, K. Kawano, Y. Chen, M. Dutka, B. Van Leer, T. Mizoguchi, Sci. Rep. 2021, 11, 21599.