Deep Insights into Complicated Superdislocation Dissociation and Core Properties of Dislocation in L12-Al3RE Compounds: A Comprehensive First-Principles Study
Li Ma
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorJingli Huang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorPingying Tang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorGuohua Huang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorLi Zeng
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorCorresponding Author
Zhipeng Wang
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan Province, 410082 China
School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong Province, 528000 China
Search for more papers by this authorCorresponding Author
Touwen Fan
College of Science, Hunan Institute of Technology, Hengyang, 421002 China
Search for more papers by this authorLi Ma
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorJingli Huang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorPingying Tang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorGuohua Huang
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorLi Zeng
Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, Guangxi Province, 530023 China
Search for more papers by this authorCorresponding Author
Zhipeng Wang
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan Province, 410082 China
School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong Province, 528000 China
Search for more papers by this authorCorresponding Author
Touwen Fan
College of Science, Hunan Institute of Technology, Hengyang, 421002 China
Search for more papers by this authorAbstract
The complicated superdislocation dissociation, dislocation core properties, and slip mechanism of L12 structural alloys have been controversial. Herein, the generalized stacking-fault energy surfaces (γ-surfaces) of the {001}, {110}, and {111} planes in L12-Al3RE (RE = Er, Tm, Yb, Lu) compounds are first calculated according to ab initio density functional theory. Based on the γ-surfaces, the superdislocation dissociation modes are preliminarily estimated using the unstable and stable stacking-fault energies and their ratio. The result shows that the possible type of dissociations cannot be determined just from these ratios. Then, the 2D Peierls–Nabarro (PN) model is applied to simulate the ⟨110⟩{111} superdislocation dissociation configuration evolution in L12-Al3RE, and the complete dislocation properties, including the dissociation width, the dislocation movement, and the Peierls energy and stress, are also investigated. The present study indicates that the combination of the γ-surface and the 2D PN model can comprehensively elucidate the superdislocation properties and deformation mechanisms of L12 structural alloys.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 D. N. Seidman, E. A. Marquis, D. C. Dunand, Acta Mater. 2002, 50, 4021.
- 2 K. E. Knipling, D. C. Dunand, D. N. Seidman, Z. Metallkd. 2006, 97, 246.
- 3 R. A. Karnesky, M. E. van Dalen, D. C. David, D. N. Seidman, Scr. Mater. 2006, 55, 437.
- 4 C. Zhang, Y. Jiang, X. Guo, K. Song, Acta Metall. Sinica 2020, 33, 39.
- 5 M. E. Krug, A. Werber, D. C. Dunand, D. N. Seidman, Acta Mater. 2010, 58, 134.
- 6 N. Q. Vo, D. C. Dunand, D. N. Seidman, Acta Mater. 2014, 64, 73.
- 7 C. M. Zhang, P. Xie, Y. Jiang, S. Zhan, W. Q. Ming, J. H. Chen, K. X. Song, H. Zhang, Acta Metall. Sinica 2021, 34, 8.
- 8 S. Babaniaris, M. Ramajayam, J. Lu, R. Varma, T. Dorin, Mater. Sci. Eng., A 2020, 793, 139873.
- 9 M. E. van Dalen, R. A. Karnesky, J. R. Cabotaje, D. C. Dunand, D. N. Seidman, Acta Mater. 2009, 57, 4081.
- 10 S. Wang, C. Zhang, X. Li, H. Huang, J. Wang, J. Mater. Sci. Technol. 2020, 58, 205.
- 11 A. Sw, B. Jwa, Z. A. Chi, A. Cx, J. Alloys Compd. 2022, 904, 163800.
- 12 S. Wang, C. Zhang, X. Li, J. Wang, J. Mater. Sci. Technol. 2021, 56, 10092.
- 13
R. E. Voskoboinikov, IOP Conf. Ser.: Mater. Sci. Eng. 2009, 3, 012009.
10.1088/1757-899X/3/1/012009 Google Scholar
- 14 R. E. Voskoboinikov, Phys. Met. Metall. 2013, 114, 545.
- 15 O. N. Mryasov, Y. N. Gornostyrev, M. V. Schilfgaarde, A. J. Freeman, Acta Mater. 2002, 50, 4545.
- 16 K. Suzuki, M. Ichihara, S. Takeuchi, Acta Metall. 1979, 27, 193.
- 17
A. Breidi, J. Allen, A. Mottura, Phys. Status Solidi B 2017, 254, 1600839.
10.1002/pssb.201600839 Google Scholar
- 18 J. H. Westbrook, JOM 1957, 9, 898.
- 19 P. H. Thornton, R. G. Davies, T. L. Johnston, Metall. Trans. 1970, 1, 207.
- 20 D. G. Morris, J. Mater. Res. 1992, 7, 303.
- 21 M. Yamaguchi, V. Paidar, D. P. Pope, V. Vitek, Philos. Mag. A 1982, 45, 867.
- 22 V. Paidar, M. Yamaguchi, D. P. Pope, V. Vitek, Philos. Mag. A 1982, 45, 883.
- 23 G. Tichy, V. Vitek, D. P. Pope, Philos. Mag. A 1986, 53, 467.
- 24 V. Paidar, D. P. Pope, V. Vitek, Acta Metall. 1984, 32, 435.
- 25 P. A. Flinn, Trans. Metall. Soc. AIME 1960, 218, 145.
- 26 M. H. Yoo, Scr. Metall. 1986, 20, 915.
- 27 D. M. Wee, D. P. Pope, V. Vitek, Acta Metall. 1984, 32, 829.
- 28 J. B. Liu, D. D. Johnson, A. V. Smirnov, Acta Mater. 2005, 53, 3601.
- 29 V. Paidar, D. P. Pope, M. Yamaguchi, Scr. Metall. 1981, 15, 1029.
- 30 N. L. Okamoto, Y. Hasegawa, W. Hashimoto, H. Inui, Philos. Mag. 2012, 93, 1.
- 31
H. Inui, N. L. Okamoto, MRS Proc. 2011, 1295, 405.
10.1557/opl.2011.460 Google Scholar
- 32 S. M. Zhang, K. Xiong, C. C. Jin, Z. B. Li, J. J. He, Y. Mao, Rare Met. 2021, 4, 1020.
- 33 S. R. Li, C. Y. Wang, S. G. Li, Z. G. Xia, P. X. Zhao, X. G. Kong, L. Qin, Intermetallics 2022, 140, 107403.
- 34 H. Su, C. Zhang, S. Wang, G. Tian, C. Xue, J. Wang, S. Guan, J. Alloys Compd. 2022, 907, 164491.
- 35 S. Wang, C. Zhang, X. Li, J. Wang, Adv. Theor. Simul. 2021, 4, 2100059.
- 36 B. Yin, Z. Wu, W. A. Curtin, Acta Mater. 2017, 123, 223.
- 37 J. R. Rice, J. Mech. Phys. Solids 1992, 40, 239.
- 38 S. Zhao, G. M. Stocks, Y. Zhang, Acta Mater. 2017, 134, 334.
- 39 Q. Dong, Z. Luo, H. Zhu, L. Wang, T. Ying, Z. Jin, D. Li, W. Ding, X. Zeng, J. Mater. Sci. Technol. 2018, 34, 1773.
- 40 H. Xing, A. Dong, J. Huang, J. Zhang, B. Sun, J. Mater. Sci. Technol. 2018, 34, 620.
- 41 H. Van Swygenhoven, P. M. Derlet, A. G. Frøseth, Nat. Mater. 2004, 3, 399.
- 42 X. Z. Wu, R. Wang, S. F. Wang, Q. Y. Wei, Appl. Surf. Sci. 2010, 256, 6345.
- 43 G. Schoeck, Mater. Sci. Eng., A 2005, 400, 7.
- 44 G. Schoeck, Acta Mater. 2006, 54, 4865.
- 45 T. W. Fan, L. G. Luo, L. Ma, B. Y. Tang, L. M. Peng, W. J. Ding, Mater. Sci. Eng. 2013, 582, 299.
- 46 Y. Kamimura, K. Edagawa, A. M. Iskandarov, M. Osawa, Y. Umeno, S. Takeuchi, Acta Mater. 2018, 148, 355.
- 47 P. Carrez, D. Ferré, P. Cordier, Philos. Mag. 2007, 87, 3229.
- 48 G. Schoeck, Mater. Sci. Eng., A 2002, 333, 390.
- 49 G. Schoeck, M. Krystian, Philos. Mag. 2005, 85, 949.
- 50 G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 51 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 52 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 53 L. Fast, J. M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B 1995, 51, 17431.
- 54 G. Schoeck, Comput. Mater. Sci. 2001, 21, 124.
- 55 A. N. Stroh, Philos. Mag. 1958, 3, 625.
- 56 A. J. E. Foreman, Acta Metall. 1955, 3, 322.
- 57 B. Joós, Q. Ren, M. S. Duesbery, Phys. Rev. B 1994, 50, 5890.
- 58 P. Villars, L. D. Calvert, in Pearson's Handbook of Crystallographic Data for Intermediate Phases, American Society of Metals, Cleveland, OH 1985.
- 59 X. Tao, Y. Ouyang, H. Liu, Y. Feng, Y. Du, Z. Jin, Int. J. Mater. Res. 2008, 99, 582.
- 60 R.-K. Pan, H.-C. Wang, T.-T. Shi, X. Tian, B.-Y. Tang, Mater. Des. 2016, 102, 100.
- 61 B. Huang, Y. H. Duan, Y. Sun, M. J. Peng, S. Chen, J. Alloys Compd. 2015, 635, 213.
- 62 S. S. Chouhan, G. Pagare, M. Rajagopalan, S. P. Sanyal, Solid State Sci. 2012, 14, 1004.
- 63 V. Vitek, V. Paidar, in Dislocations in Solids (Ed: J. P. Hirth), Elsevier, Amsterdam 2008, p. 439.
- 64 J. B. Liu, D. D. Johnson, Mater. Res. Innov. 2014, 18, S4.