Optical properties of silica aerogels with embedded multiwalled carbon nanotubes
Corresponding Author
Alexander I. Chernov
Prokhorov General Physics Institute, RAS, 38 Vavilov str., 119991 Moscow, Russia
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy. 31, 115409 Moscow, Russia
Corresponding author: e-mail [email protected], Tel/Fax: +74995038206
Search for more papers by this authorAlexander Y. Predein
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorAlexander F. Danilyuk
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorVladimir L. Kuznetsov
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
Search for more papers by this authorTatyana V. Larina
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorElena D. Obraztsova
Prokhorov General Physics Institute, RAS, 38 Vavilov str., 119991 Moscow, Russia
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy. 31, 115409 Moscow, Russia
Search for more papers by this authorCorresponding Author
Alexander I. Chernov
Prokhorov General Physics Institute, RAS, 38 Vavilov str., 119991 Moscow, Russia
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy. 31, 115409 Moscow, Russia
Corresponding author: e-mail [email protected], Tel/Fax: +74995038206
Search for more papers by this authorAlexander Y. Predein
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorAlexander F. Danilyuk
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorVladimir L. Kuznetsov
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
Search for more papers by this authorTatyana V. Larina
Boreskov Institute of Catalysis SB RAS, Lavrentieva ave. 5, 630090 Novosibirsk, Russia
Search for more papers by this authorElena D. Obraztsova
Prokhorov General Physics Institute, RAS, 38 Vavilov str., 119991 Moscow, Russia
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe hwy. 31, 115409 Moscow, Russia
Search for more papers by this authorAbstract
Multiwalled carbon nanotubes (MWCNTs) were successfully incorporated inside silica aerogel matrix. Solid composite materials were investigated by high-resolution transmission microscopy, scanning electron microscopy, optical spectroscopy. MWCNTs in the form of small bundles and individual tubes get locked inside the aerogel between its pores resulting in the local solution-free environment for nanotubes. Optical transmission of the composite material can be modified by the amount of the added MWCNTs. Nonlinear optical properties were studied by a Z-scan technique. Composite materials demonstrate saturable absorption for femtosecond laser pulses at 515 nm wavelength that are attributed to the properties of embedded nanotubes. Silica aerogels possess significantly better thermal stability compared to polymer matrices, hosts that are frequently used for saturable absorption applications of carbon nanotubes. Solid and lightweight silica aerogels with embedded nanotubes can be used as optical elements for various photonic devices.
Photo of silica aerogel with embedded MWCNTs. Normalized Z-scan transmittance of silica aerogel with nanotubes for two different on-focus intensities.
References
- 1 J. Fricke and T. Tillotson, Thin Solid Films 297, 212 ( 1997).
- 2 M. L. Anderson, R. M. Stroud, and D. R. Rolison, Nano Lett. 2, 235 ( 2002).
- 3 P. Tsou, J. Non-Cryst. Solids 186, 415 ( 1995).
- 4 G. Oskam and P. C. Searson, J. Phys. Chem. B 102, 2464 ( 1998).
- 5 X. Du, C. Wang, T. Li, and M. Chen, Ionics 15, 561 ( 2009).
- 6 M. Yu. Barnyakov, V. S. Bobrovnikov, A. R. Buzykaev, A. F. Danilyuk, S. F. Ganzhur, I. I. Goldberg, G. M. Kolachev, S. A. Kononov, E. A. Kravchenko, G. D. Minakov, A. P. Onuchin, G. A. Savinov, and V. A. Tayursky, Nucl. Instrum. Methods Phys. Res. A 453, 326 ( 2000).
- 7 N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson, and C. I. Merzbacher, Chem. Mater. 11, 2837 ( 1999).
- 8 J. G. Duque, C. E. Hamilton, G. Gupta, S. A. Crooker, J. J. Crochet, A. Mohite, H. Htoon, K. A. DeFriend Obrey, A. M. Dattelbaum, and S. K. Doorn, ACS Nano 5, 6686 ( 2011).
- 9 Y. Zhang, Y. Shen, D. Han, Z. Wang, J. Song, and L. Niu, J. Mater. Chem. 16, 4592 ( 2006).
- 10 I.-K. Jung, J. L. Gurav, U. K. H. Bangi, S. Baek, and H.-H. Park, J. Non-Cryst. Solids 358, 550 ( 2012).
- 11 X. Changshu, P. Yubai, L. Xuejian, S. Xiaomei, S. Xingwei, and J. Guo, J. Nanosci. Nanotechnol. 6, 3835 ( 2006).
- 12 C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, and J. Guo, Appl. Phys. Lett. 87, 123103 ( 2005).
- 13 V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, Nano Lett. 1, 719 ( 2001).
- 14 H. I. Elim, W. Ji, G. H. Ma, K. Y. Lim, C. H. Sow, and C. H. A. Huan, Appl. Phys. Lett. 85, 1799 ( 2004).
- 15 R. A. Ganeev, A. I. Ryasnyansky, V. I. Redkorechev, K. Fostiropoulos, G. Priebe, and T. Usmanov, Opt. Commun. 225, 131 ( 2003).
- 16 A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto, Phys. Rev. Lett. 94, 047404 ( 2005).
- 17 A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, V. I. Konov, A. V. Konyashchenko, P. G. Kryukov, and E. M. Dianov, Quantum Electron. 37, 847 ( 2007).
- 18 J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, Adv. Mater. 21, 2430 ( 2009).
- 19 V. R. Sorochenko, E. D. Obraztsova, P. S. Rusakov, and M. G. Rybin, Quantum Electron. 42, 907 ( 2012).
- 20 K. Wang, J. Wang, J. Fan, M. Lotya, A. O'Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, ACS Nano 7, 9260 ( 2013).
- 21 Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, F. Wang, Z. Sun, and H. Zhang, Nanoscale 8, 1066 ( 2016).
- 22 Y. Zhu, H. I. Elim, Y.-L. Foo, T. Yu, Y. Liu, W. Ji, J.-Y. Lee, Z. Shen, A. T. S. Wee, J. T. L. Thong, and C. H. Sow, Adv. Mater. 18, 587 ( 2006).
- 23 C. Zheng, M. Feng, Y. Du, and H. Zhan, Carbon 47, 2889 ( 2009).
- 24 M. Pokrass, Z. Burshtein, R. Gvishi, and M. Nathan, Opt. Mater. Express 2, 825 ( 2012).
- 25 Z. Hongbing, C. Wenzhe, W. Minquan, Zhengchan, and Z. Chunlin, Chem. Phys. Lett. 382, 313 ( 2003).
- 26 T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, Adv. Mater. 21, 3874 ( 2009).
- 27 A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, Appl. Phys. Lett. 92, 171113 ( 2008).
- 28 X. Huang, P. Jiang, and T. Tanaka, IEEE Electr. Insul. Mag. 27, 8 ( 2011).
- 29 N. A. El-Zaher and W. G. Osiris, J. Appl. Polym. Sci. 96, 1914 ( 2005).
- 30 D. V. Krasnikov, A. N. Shmakov, V. L. Kuznetsov, K. V. Elumeeva, and A. V. Ishchenko, Bull. Russ. Acad. Sci.: Phys. 77, 155 ( 2013).
- 31 J. Zou, J. Liu, A. S. Karakoti, A. Kumar, D. Joung, Q. Li, S. I. Khondaker, S. Seal, and L. Zhai, ACS Nano 4, 7293 ( 2010).
- 32 A. P. Rao, A. V. Rao, and G. M. Pajonk, Appl. Surf. Sci. 253, 6032 ( 2007).
- 33 V. L. Kuznetsov, S. I. Moseenkov, K. V. Elumeeva, T. V. Larina, V. F. Anufrienko, A. I. Romanenko, O. B. Anikeeva, and E. N. Tkachev, Phys. Status Solidi B 248, 2572 ( 2011).
- 34 J. Kürti, V. Zólyomi, A. Grüneis, and H. Kuzmany, Phys. Rev. B 65, 165433 ( 2002).
- 35 E. D. Obraztsova, S. N. Bokova, V. L. Kuznetsov, A. N. Usoltseva, V. I. Zaikovskii, U. Dettlaff-Weglikowska, S. Roth, and H. Kuzmany, AIP Conf. Proc. 685, 215 ( 2003).
- 36 M. M. Gen, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moseenkov, and A. V. Ishchenko, Quantum Electron. 39, 342 ( 2009).
- 37 G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moseenkov, and A. V. Ishchenko, Tech. Phys. Lett. 35, 162 ( 2009).
- 38 G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moseenkov, Tech. Phys. Lett. 37, 831 ( 2011).
- 39 G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, M. A. Shuvaeva, and S. I. Moseenkov, Tech. Phys. Lett. 39, 337 ( 2013).
- 40 M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, IEEE J. Quantum Electron. 26, 760 ( 1990).