Revelation of Dislocations in β-Ga2O3 Substrates Grown by Edge-Defined Film-Fed Growth
Corresponding Author
Yongzhao Yao
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorYukari Ishikawa
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorYoshihiro Sugawara
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorCorresponding Author
Yongzhao Yao
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorYukari Ishikawa
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorYoshihiro Sugawara
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Atsuta-ku, 456-8587 Japan
Search for more papers by this authorAbstract
Chemical etching and synchrotron X-ray topography (XRT) are used to reveal dislocations in commercial edge-defined film-fed growth (EFG) β-Ga2O3 substrates with the (010)-oriented or the (−201)-oriented surface. Different etchants and etching temperatures are compared, and the optimal condition is found to be etching in a eutectic KOH + NaOH solution at 200 °C for 2 min. By counting the surface features formed by etching, dislocation density is estimated to be in the range of 6 × 104–1 × 106 cm−2, viewed from the (010) surface, and 8 × 104 cm−2, viewed from the (−201) surface. A comparison of dislocation contrast observed by XRT and etch pits has confirmed that the above chemical etching is capable of revealing dislocations accurately.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1J. B. Varley, J. R. Weber, A. Janotti, C. G. Van de Walle, Appl. Phys. Lett. 2010, 97, 142106.
- 2C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, C. G. Van de Walle, New J. Phys. 2011, 13, 085014.
- 3M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 2012, 100, 013504.
- 4M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Technol. 2016, 31, 034001.
- 5S. Fujita, M. Oda, K. Kaneko, T. Hitora, Jpn. J. Appl. Phys. 2016, 55, 1202A3.
- 6A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 2016, 55, 1202A2.
- 7H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 2008, 47, 8506.
- 8N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 1997, 70, 3561.
- 9E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 2004, 270, 420.
- 10E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Appl. Phys. Lett. 2008, 92, 202120.
- 11Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 2014, 404, 184.
- 12Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, ECS J. Solid State Sci. Technol. 2017, 6, Q3007.
- 13Z. Galazka, S. Ganschow, A. Fiedler, R. Bertram, D. Klimm, K. Irmscher, R. Schewski, M. Pietsch, M. Albrecht, M. Bickermann, J. Cryst. Growth 2018, 486, 82.
- 14K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, J. Cryst. Growth 2016, 447, 36.
- 15E. Ohba, T. Kobayashi, M. Kado, K. Hoshikawa, Jpn. J. Appl. Phys. 2016, 55, 1202BF.
- 16H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chen, T. Sekiguchi, Philos. Mag. 2014, 94, 1674.
- 17S. Sintonen, S. Suihkonen, H. Jussila, H. Lipsanen, T. O. Tuomi, E. Letts, S. Hoff, T. Hashimoto, J. Cryst. Growth 2014, 406, 72.
- 18Y. Yao, Y. Sugawara, Y. Ishikawa, J. Appl. Phys. Review.
- 19K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, IEEE Electron Device Lett. 2013, 34, 493.
- 20M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 2016, 55, 1202A1.
- 21O. Ueda, N. Ikenaga, K. Koshi, K. Iizuka, A. Kuramata, K. Hanada, T. Moribayashi, S. Yamakoshi, M. Kasu, Jpn. J. Appl. Phys. 2016, 55, 1202BD.
- 22K. Nakai, T. Nagai, K. Noami, T. Futagi, Jpn. J. Appl. Phys. 2015, 54, 051103.
- 23a) H. Yamaguchi, A. Kuramata, T. Masui, Superlattices Microstruct. 2016, 99, 99; b) H. Yamaguchi, A. Kuramata, T. Masui, Corrigendum 2019, 130, 232.
- 24K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 2016, 55, 030303.
- 25K. Hanada, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 2016, 55, 1202BG.
- 26D. Zhuang, J. H. Edgar, Mater. Sci. Eng. R 2005, 48, 1.
- 27T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, S. Fujita, Jpn. J. Appl. Phys. 2009, 48, 040208.
- 28M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, Jpn. J. Appl. Phys. 2017, 56, 091101.
- 29T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, M. Kasu, Jpn. J. Appl. Phys. 2017, 56, 086501.
- 30Y. Yao, Y. Ishikawa, Y. Sugawara, H. Saitoh, K. Danno, H. Suzuki, Y. Kawai, N. Shibata, Jpn. J. Appl. Phys. 2011, 50, 075502.
10.7567/JJAP.50.075502 Google Scholar
- 31Y. Yao, Y. Ishikawa, Y. Sugawara, D. Yokoe, M. Sudo, N. Okada, K. Tadatomo, Superlattices Microstruct. 2016, 99, 83.
- 32Y. Yao, Y. Ishikawa, K. Sato, Y. Sugawara, K. Danno, H. Suzuki, T. Bessho, Appl. Phys. Express 2012, 5, 075601.
- 33R. Yakimova, A. Hylén, M. Tuominen, M. Syväjärvi, E. Jarzén, Diamond Relat. Mater. 1997, 6, 1456.
- 34S. A. Sakwe, R. Müller, P. J. Wellmann, J. Cryst. Growth 2006, 289, 520.
- 35Y. Yao, Y. Ishikawa, Y. Sugawara, J. Appl. Phys. Review.
- 36Y. Yao, Y. Ishikawa, Y. Sugawara, J. Appl. Phys. Unpublished.
- 37Y. Yao, Y. Ishikawa, Y. Sugawara, Y. Takahashi, K. Hirano, J. Electron. Mater. 2018, 47, 5007.