Solvent-Assisted Interfacial Tension Deformation of Spherical Particles for the Fabrication of Non-Spherical Particle Arrays
Lu Zheng
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhaohui Ma
Key Laboratory for Renewable Energy Institute of Physics Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorChong Geng
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Qingfeng Yan
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
E-mail: [email protected]Search for more papers by this authorLu Zheng
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhaohui Ma
Key Laboratory for Renewable Energy Institute of Physics Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorChong Geng
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Qingfeng Yan
Department of Chemistry State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, Beijing, 100084 China
E-mail: [email protected]Search for more papers by this authorAbstract
A facile and efficient approach is developed for the fabrication of asymmetric non-spherical polymer particle arrays. A specific amount of solvent is provided to interact with the spherical polymer particles to intensify the segmental mobility, thus suppressing the viscosity and the glass transition temperature of the polymer particles. The spherical polymer particles in the rubbery state are deformed into non-spherical particle arrays at the gas/liquid interface. The upper parts of the polymer particles that protrude out of the liquid phase undergo deformation by interfacial tensions at the three-phase contact line, allowing the formation of a ridge of polymer with a protrusion on the top surface. Simultaneously, the lower parts of the polymer particles submerged under the liquid phase are subjected to enormous surface tension at the contact points, leading to a non-linear coalescence behavior of the neighboring polymer particles.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ppsc201300147-sup-0001-S1.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Ge, Y. Hu, Y. Yin, Angew. Chem. Int. Ed. 2007, 46, 7428.
- 2J.-W. Kim, D. Lee, H. C. Shum, D. A. Weitz, Adv. Mater. 2008, 20, 3239.
- 3L. Y. Wu, B. M. Ross, S. Hong, L. P. Lee, Small 2010, 6, 503.
- 4H. J. Tsai, Y. L. Lee, Langmuir 2007, 23, 12687.
- 5B. Walther, C. Cramer, A. Tiemeyer, L. Hamberg, P. Fischer, E. Windhab, A. Hermansson, J. Colloid Interface Sci. 2005, 286, 378.
- 6K. J. Stebe, E. Lewandowski, M. Ghosh, Science 2009, 325, 159.
- 7C. P. Lapointe, T. G. Mason, I. I. Smalyukh, Science 2009, 326, 1083.
- 8R. C. Kramb, R. Zhang, K. S. Schweizer, C. F. Zukoski, Phys. Rev. Lett. 2010, 105, 055702.
- 9Y. X. Hu, J. P. Ge, T. R. Zhang, Y. D. Yin, Adv. Mater. 2008, 20, 4599.
- 10J.-W. Kim, R. J. Larsen, D. A. Weitz, J. Am. Chem. Soc. 2006, 128, 14374.
- 11T. Ding, K. Song, K. Clays, C.-H. Tung, Adv. Mater. 2009, 21, 1936.
- 12J. P. Singh, P. P. Lele, F. Nettesheim, N. J. Wagner, E. M. Furst, Phys. Rev. E 2009, 79, 050401.
- 13P. P. Lele, E. M. Furst, Langmuir 2009, 25, 8875.
- 14T. Ding, Z.-F. Liu, K. Song, K. Clays, C.-H. Tung, Langmuir 2009, 25, 10218.
- 15T. Ding, Y. Tian, K. Liang, K. Clays, K. Song, G. Yang, C.-H. Tung, Chem. Commun. 2011, 47, 2429.
- 16H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, G. A. Ozin, Chem. Commun. 2002, 22, 2736.
- 17H. Míguez, F. Meseguer, C. López, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, V. Fornés, Adv. Mater. 1998, 10, 480.
10.1002/(SICI)1521-4095(199804)10:6<480::AID-ADMA480>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 18L. K. Teh, N. K. Tan, C. C. Wong, S. Li, Appl. Phys. A: Mater. Sci. Process. 2005, 81, 1399.
- 19K. B. Singh, M. S. Tirumkudulu, Phys. Rev. Lett. 2007, 98, 218302.
- 20P. Xu, A. S. Mujumdar, B. Yu, Drying Technol. 2009, 27, 636.
- 21C. Li, G. Hong, P. Wang, D. Yu, L. Qi, Chem. Mater. 2009, 21, 891.
- 22M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, Q. Li, Macromol. Chem. Phys. 2009, 210, 230.
- 23G. D. Moon, T. I. Lee, B. Kim, G. Chae, J. Kim, S. Kim, J.-M. Myoung, U. Jeong, ACS Nano 2011, 5, 8600.
- 24Q. Chen, N. Ma, H. Qian, L. Wang, Z. Lu, Polymer 2007, 48, 2659.
- 25N. Sasao, R. Yamamoto, N. Kihara, T. Shimada, A. Yuzawa, T. Okino, Y. Ootera, Y. Kawamonzen, H. Hieda, T. Maeda, Y. Kamata, A. Kikitsu, J. Photopolym. Sci. Technol. 2012, 25, 27.
- 26S. Mishra, S. Keten, Appl. Phys. Lett. 2013, 102, 041903.
- 27J. S. Vrentas, J. L. Duda, J. Polym. Sci., Polym. Phys. Ed. 1977, 15, 403.
- 28M. H. Gutierrez, W. T. Ford, J. Polym. Sci., Part A: Polym. Chem. 1986, 24, 655.
- 29H. Morita, K. Tanaka, T. Kajiyama, T. Nishi, M. Doi, Macromolecules 2006, 39, 6233.
- 30J. T. Seitz, J. Appl. Polym. Sci. 1993, 49, 1331.
- 31F. N. Kelley, F. Bueche, J. Polym. Sci. 1961, 50, 549.
- 32R. Finn, Phys. Fluids 2006, 18, 047102.
- 33D. Roylance, Engineering Viscoelasticity, MIT Press, Cambridge, MA 2001.
- 34Y. S. Jung, C. A. Ross, Nano Lett. 2007, 7, 2046.
- 35Y. Dong, D. C. Sundberg, J. Colloid Interface Sci. 2003, 258, 97.
- 36S. Lee, D. H. Kim, D. Needham, Langmuir 2001, 17, 5537.
- 37C. Pan, Q. Ke, G. Ouyang, X. Zhen, Y. Yang, Z. Huang, J. Chem. Eng. Data 2004, 49, 1839.
- 38D. Duncan, D. Li, J. Gaydos, A. W. Neumann, J. Colloid Interface Sci. 1995, 169, 256.
- 39J. Drelich, Colloids Surf. 1996, 116, 43.
- 40B. J. Park, E. M. Furst, Langmuir 2010, 26, 10406.
- 41C. Geng, L. Zheng, J. Yu, Q. Yan, T. Wei, X. Wang, D. Shen, J. Mater. Chem. 2012, 22, 22678.
- 42D. Kraus, J. K. N. Lindner, B. Stritzker, Nucl. Instrum. Meth. B 2007, 257, 455.
- 43J. K. N. Lindner, B. Gehl, B. Stritzker, Nucl. Instrum. Meth. B 2006, 242, 167.
- 44C. T. Bellehumeur, M. K. Bisaria, J. Vlachopoulos, Polym. Eng. Sci. 1996, 36, 2198.
- 45S.-E. Shim, Y.-J. Cha, J.-M. Byun, S. Choe, J. Appl. Polym. Sci. 1999, 71, 2259.
10.1002/(SICI)1097-4628(19990328)71:13<2259::AID-APP17>3.0.CO;2-5 CAS Web of Science® Google Scholar
- 46J. Yu, Q. Yan, D. Shen, ACS Appl. Mater. Interfaces 2010, 2, 1922.