Effect of cold plasma treatment and plasma-activated water on physicochemical and structural properties of starch: A green and novel approach for environmental sustainability
Corresponding Author
Rakesh Kumar Gupta
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Correspondence Rakesh Kumar Gupta
Email: [email protected]
Search for more papers by this authorProshanta Guha
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Search for more papers by this authorPrem Prakash Srivastav
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Search for more papers by this authorCorresponding Author
Rakesh Kumar Gupta
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Correspondence Rakesh Kumar Gupta
Email: [email protected]
Search for more papers by this authorProshanta Guha
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Search for more papers by this authorPrem Prakash Srivastav
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
Search for more papers by this authorAbstract
Starch is a crucial part of the human dietary regimen. Still, its restricted water solubility, low viscosity, and weak heat stability are unfavorable physicochemical characteristics that restrict its use in food applications. So, in the 21st century, green and novel technologies such as cold plasma technology (CPT) and plasma-activated water (PAW) have been employed for starch modification to improve the starch's physicochemical, digestibility, functional, structural, and thermal properties. This article provided an in-depth evaluation of the use of cold plasma intervention in starch systems. Moreover, starch was modified due to cross-linking, plasma etching, and depolymerization mechanisms mediated by plasma species. We may conclude that CPT and PAW are substitute methods for changing starch characteristics.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1R. K. Gupta, P. Guha, P. P. Srivastav, Food Chem. Adv. 2022, 1, 100135.
10.1016/j.focha.2022.100135 Google Scholar
- 2M. Sunder, K. D. Mumbrekar, N. Mazumder, Curr. Res. Food Sci. 2022, 5, 141.
- 3Q. Chang, B. Zheng, Y. Zhang, H. Zeng, Int. J. Biol. Macromol. 2021, 186, 163.
- 4T. Jiang, Q. Duan, J. Zhu, H. Liu, L. Yu, Adv. Ind. Eng. Polym. Res. 2020, 3, 8.
10.1016/j.aiepr.2019.11.003 Google Scholar
- 5A. Y. Okyere, S. Rajendran, G. A. Annor, Curr. Res. Food Sci. 2022, 5, 451.
- 6P. Adewale, M. S. Yancheshmeh, E. Lam, Carbohydr. Polym. 2022, 291, 119590.
- 7K. Bashir, M. Aggarwal, J. Food Sci. Technol. 2019, 56, 513.
- 8S. Punia Bangar, A. O. Ashogbon, A. Singh, V. Chaudhary, W. S. Whiteside, Carbohydr. Polym. 2022, 287, 119265.
- 9M. E. H. El Nokab, Y. A. Alassmy, M. M. Abduljawad, K. M. Al-shamrani, M. S. Alnafisah, Z. Asgar Pour, C. L. Tucker, K. O. Sebakhy, Polymers 2022, 14, 4686.
- 10A. Apriyanto, J. Compart, J. Fettke, Plant Sci. 2022, 318, 111223.
- 11J. Kaur, N. Ahmed, B. Thagunna, K. Kumar, J. Postharvest Technol. 2022, 10, 75.
- 12S. Wang, J. Wang, Y. Liu, X. Liu, Starch Structure, Functionality and Application in Foods, Springer, Singapore, Singapore 2020, pp. 131.
- 13X. Wang, L. Huang, C. Zhang, Y. Deng, P. Xie, L. Liu, J. Cheng, Carbohydr. Polym. 2020, 240, 116292.
- 14Z. Wang, P. Mhaske, A. Farahnaky, S. Kasapis, M. Majzoobi, Food Hydrocoll. 2022, 129, 107542.
- 15S. Ptak, A. Zarski, J. Kapusniak, Materials (Basel). 2020, 13, 1.
10.3390/ma13204479 Google Scholar
- 16F. Ren, J. Wang, F. Xie, K. Zan, S. Wang, S. Wang, Green Chem. 2020, 22, 2162.
- 17Y. Fan, F. Picchioni, Carbohydr. Polym. 2020, 241, 116350.
- 18K. Schafranski, V. C. Ito, L. G. Lacerda, Food Hydrocoll. 2021, 117, 106690.
- 19Z. Han, R. Shi, D. W. Sun, Trends Food Sci. Technol. 2020, 97, 126.
- 20L. M. Fonseca, S. L. M. E. Halal, A. R. G. Dias, E. R. Zavareze, Carbohydr. Polym. 2021, 274, 118665.
- 21H.-Y. Kim, S.-J. Ye, M.-Y. Baik, Food Hydrocoll. 2023, 134, 108051.
- 22S. Pankaj, Z. Wan, K. Keener, Foods 2018, 7, 4.
- 23S. Chudják, Z. Kozáková, F. Krčma, ACS Earth Sp. Chem. 2021, 5, 535.
- 24S. V. R. Rocco, E. S. Lavine, J. T. Banasek, W. M. Potter, D. A. Hammer, Phys. Plasmas 2022, 29, 110703.
- 25R. Snoeckx, A. Bogaerts, Chem. Soc. Rev. 2017, 46, 5805.
- 26H. Scudino, E. R. Tavares-Filho, J. T. Guimarães, E. T. Mársico, M. C. Silva, M. Q. Freitas, T. C. Pimentel, E. A. Esmerino, A. G. Cruz, Food Res. Int. 2023, 167, 112702.
- 27A. C. R. Nogueira, K. A. Amorim, S. C. Bastos, A. C. M. Pinheiro, R. B. Teixeira, A. G. da Cruz, J. F. Rodrigues, J. Sens. Stud. 2023, 38, e12863.
- 28N. B. Rathod, S. P. Kahar, R. C. Ranveer, U. S. Annapure, Int. J. Dairy Technol. 2021, 74, 615.
- 29C. dos Santos Rocha, M. Magnani, G. L. de Paiva Anciens Ramos, F. F. Bezerril, M. Q. Freitas, A. G. Cruz, T. C. Pimentel, Curr. Opin. Food Sci. 2022, 47, 100892.
- 30W. Crookes, Am. J. Plant Sci. 1879, s3-18, 241.
- 31F. Zhu, Food Chem. 2017, 232, 476.
- 32M. Moreau, N. Orange, M. G. J. Feuilloley, Biotechnol. Adv. 2008, 26, 610.
- 33Y. Zhou, R. Chu, L. Fan, J. Zhao, W. Li, X. Jiang, X. Meng, Y. Li, S. Yu, Y. Wan, Sci. Total Environ. 2023, 866, 161453.
- 34S. Shilpa, P. Gopinath, Vacuum 2023, 208, 111729.
- 35K. De Baerdemaeker, A. Van Reepingen, A. Nikiforov, B. De Meulenaer, N. De Geyter, F. Devlieghere, Foods 2023, 12, 386.
- 36S. Kumar, S. Pipliya, P. P. Srivastav, J. Food Process Eng. 2023, 46, e14203. https://doi.org/10.1111/jfpe.14203
- 37A. Patra, V. A. Prasath, R. Pandiselvam, P. P. Sutar, G. Jeevarathinam, Food Control 2022, 142, 109268.
- 38R. Thirumdas, A. Kothakota, U. Annapure, K. Siliveru, R. Blundell, R. Gatt, V. P. Valdramidis, Trends Food Sci. Technol. 2018, 77, 21.
- 39A. Barjasteh, Z. Dehghani, P. Lamichhane, N. Kaushik, E. H. Choi, N. K. Kaushik, Appl. Sci. 2021, 11, 3372.
- 40D. Palma, C. Richard, M. Minella, Chem. Eng. J. Adv.2022, 10, 100253.
- 41A. Yusuf, H. K. Amusa, J. O. Eniola, A. Giwa, O. Pikuda, A. Dindi, M. R. Bilad, Chem. Eng. J. Adv. 2023, 14, 100443.
- 42B. Aaliya, K. V. Sunooj, M. Navaf, P. P. Akhila, C. Sudheesh, S. Sabu, A. Sasidharan, S. K. Sinha, J. George, Food Hydrocoll. 2022, 130, 107709.
- 43Y. Yan, B. Peng, B. Niu, X. Ji, Y. He, M. Shi, Front. Nutr. 2022, 9, 19.
- 44Y.-J. Chou, Y. Tseng, K. C. Hsieh, Y. Ting, SSRN Electron. J.. https://doi.org/10.2139/ssrn.4332993
10.2139/ssrn.4332993 Google Scholar
- 45Y. Yan, L. Feng, M. Shi, C. Cui, Y. Liu, Food Chem. 2020, 306, 125589.
- 46A. Y. Okyere, P. G. Boakye, E. Bertoft, G. A. Annor, Curr. Res. Food Sci. 2022, 5, 1668.
- 47W. Chaiwat, R. Wongsagonsup, N. Tangpanichyanon, T. Jariyaporn, P. Deeyai, M. Suphantharika, A. Fuongfuchat, M. Nisoa, S. Dangtip, Food Bioprocess Technol. 2016, 9, 1125.
- 48N. Srangsomjit, T. Bovornratanaraks, S. Chotineeranat, J. Anuntagool, Food Res. Int. 2022, 162, 111961.
- 49X. Sun, A. S. M. Saleh, Z. Sun, X. Ge, H. Shen, Q. Zhang, X. Yu, L. Yuan, W. Li, LWT 2022, 153, 112483.
- 50C. Sudheesh, K. Valiyapeediyekkal Sunooj, B. Aaliya, M. Navaf, P. Parambil Akhila, S. Ahmad Mir, S. Sabu, A. Sasidharan, K. Pulissery Sudheer, S. Kumar Sinha, V. Appukuttan Sajeevkumar, J. George, Food Chem. 2023, 398, 133881.
- 51S. Gao, H. Zhang, J. Pei, H. Liu, M. Lu, J. Chen, M. Wang, Int. J. Biol. Macromol. 2022, 213, 268.
- 52R. Thirumdas, A. Trimukhe, R. R. Deshmukh, U. S. Annapure, Carbohydr. Polym. 2017, 157, 1723.
- 53S. Banura, R. Thirumdas, A. Kaur, R. R. Deshmukh, U. S. Annapure, LWT 2018, 89, 719.
- 54A. P. M. G. Carvalho, D. R. Barros, L. S. da Silva, E. A. Sanches, C. C. Pinto, S. M. de Souza, M. T. P. S. Clerici, S. Rodrigues, F. A. N. Fernandes, P. H. Campelo, Int. J. Biol. Macromol. 2021, 182, 1618.
- 55R. G. T. Kalaivendan, A. Mishra, G. Eazhumalai, U. S. Annapure, Int. J. Biol. Macromol. 2022, 196, 63.
- 56R. K. Gupta, P. Guha, P. P. Srivastav, Int. J. Biol. Macromol. 2023, 253, 126772.
- 57G. Chen, B. Yang, J. Wang, Y. Zhang, S. Li, Y. Chen, J. Food Sci. 2023, 88, 2053.
- 58P. Kaur, U. S. Annapure, Food Res. Int. 2023, 169, 112930.
- 59C. da Costa Pinto, E. A. Sanches, M. T. P. S. Clerici, S. Rodrigues, F. A. N. Fernandes, S. M. de Souza, B. E. Teixeira-Costa, J. de Araújo Bezerra, C. V. Lamarão, P. H. Campelo, Food Bioprocess Technol. 2023, 16, 768.
- 60E. Devi, R. G. T. Kalaivendan, G. Eazhumalai, U. S. Annapure, J. Agric. Food Res. 2023, 12, 100567.
- 61W. Liang, Q. Zhang, H. Duan, S. Zhou, Y. Zhou, W. Li, W. Yan, Carbohydr. Polym. 2023, 320, 121200.
- 62M. Navaf, K. V. Sunooj, B. Aaliya, P. P. Akhila, C. Sudheesh, S. K. Sinha, P. Murugesan, S. Sabu, A. Sasidharan, S. A. Mir, J. George, M. Lackner, Starch - Stärke 2023, 75, 2200165.
- 63F. Shokrollahi, F. Shahidi, M. J. Varidi, A. Koocheki, F. Sohbatzadeh, A. Motamedzadegan, Starch - Stärke 2023, 75, 2200187.
- 64W. Liang, X. Liu, J. Zheng, W. Zhao, Y. Zheng, X. Ge, H. Shen, G. Ospankulova, M. Muratkhan, K. Zhainagul Kh, W. Li, Food Bioprocess Technol. 2023, 16, 2287.
- 65T. Kou, Q. Gao, Food Hydrocoll. 2019, 88, 86.
- 66U. S. Annapure, Technologies in Food Processing 2018, 1, pp. 45–66.
- 67R. Chang, H. Lu, Y. Tian, H. Li, J. Wang, Z. Jin, Int. J. Biol. Macromol. 2020, 145, 197.
- 68X. Sun, Z. Sun, A. S. M. Saleh, Y. Lu, X. Zhang, X. Ge, H. Shen, X. Yu, W. Li, Food Chem. 2023, 405, 134837.
- 69C. Sudheesh, K. V. Sunooj, S. K. Sinha, J. George, S. Kumar, P. Murugesan, S. Arumugam, K. Ashwath Kumar, V. A. Sajeev Kumar, Food Chem. 2019, 294, 194.
- 70C. Lii, Carbohydr. Polym. 2002, 49, 449.
- 71R. Thirumdas, C. Sarangapani, U. S. Annapure, Food Biophys. 2015, 10, 1.
- 72Wu TY, Sun NN, Chau CF, J. Food Drug Anal. 2018, 26, 244.
- 73X. Ge, H. Shen, C. Su, B. Zhang, Q. Zhang, H. Jiang, W. Li, Food Chem. 2021, 349, 129159.
- 74Z. Guo, Q. Gou, L. Yang, Q. Yu, L. Han, Food Chem. 2022, 370, 130992.
- 75S. L. Yan, G. Y. Chen, Y. J. Hou, Y. Chen, Int. J. Food Sci. Technol. 2020, 55, 641.
- 76C. Chen, F. Tong, R. Sun, J. Yang, Z. Pang, X. Liu, Foods 2023, 12, 4042. https://doi.org/10.3390/foods12214042
- 77Y. Zhou, Y. Yan, M. Shi, Y. Liu, Polymers 2019, 11, 8.
- 78T.-Y. Wu, N.-N. Sun, C.-F. Chau, J. Food Drug Anal. 2018, 26, 244.
- 79B. Klein, V. Z. Pinto, N. L. Vanier, E. R. Zavareze, R. Colussi, J. A. Evangelho, L. C. Gutkoski, A. R. G. Dias, Carbohydr. Polym. 2013, 98, 1578.
- 80X. Ge, H. Shen, X. Sun, W. Liang, X. Zhang, Z. Sun, Y. Lu, W. Li, Food Hydrocoll. 2022, 130, 107732.
- 81Z. Davoudi, M. H. Azizi, M. Barzegar, Int. J. Biol. Macromol. 2022, 223, 790.
- 82H. Shen, X. Ge, B. Zhang, C. Su, Q. Zhang, H. Jiang, G. Zhang, L. Yuan, X. Yu, W. Li, Food Chem. 2022, 372, 131240.
- 83M. Yashini, S. Khushbu, N. Madhurima, C. K. Sunil, R. Mahendran, N. Venkatachalapathy, Crit. Rev. Food Sci. Nutr. 2022, 1.Doi:10.1080/10408398.2022.2141680
- 84X. Sun, Z. Sun, Y. Guo, J. Zhao, J. Zhao, X. Ge, H. Shen, Q. Zhang, W. Yan, Innov. Food Sci. Emerg. Technol. 2021, 74, 102855.
- 85X. Sun, A. S. M. Saleh, Y. Lu, Z. Sun, X. Zhang, X. Ge, H. Shen, X. Yu, W. Li, Int. J. Biol. Macromol. 2022, 212, 146.
- 86H. Shen, X. Ge, B. Zhang, C. Su, Q. Zhang, H. Jiang, G. Zhang, W. Li, Food Funct. 2021, 12, 8169.
- 87I. Sifuentes-Nieves, P. C. Flores-Silva, C. Gallardo-Vega, E. Hernández-Hernández, G. Neira-Velázquez, G. Mendez-Montealvo, G. Velazquez, Carbohydr. Polym. 2020, 237, 116103.
- 88M. J. Khan, V. Jovicic, A. Zbogar-Rasic, V. Zettel, A. Delgado, B. Hitzmann, Foods 2023, 12, 2056.
- 89A. Y. Okyere, University of Minnesota, [Doctoral dissertation] 2022.
- 90B. Zhang, C. Tan, F. Zou, Y. Sun, N. Shang, W. Wu, Foods 2022, 11, 2818.
- 91M. E. Oner, B. Gultekin Subasi, G. Ozkan, T. Esatbeyoglu, E. Capanoglu, Food Res. Int. 2023, 172, 113079.
- 92X. Ge, H. Shen, C. Su, B. Zhang, Q. Zhang, H. Jiang, L. Yuan, X. Yu, W. Li, Carbohydr. Polym. 2021, 272, 118481.
- 93A. Los, D. Ziuzina, R. van Cleynenbreugel, D. Boehm, P. Bourke, Foods 2020, 9, 898.
- 94S. H. Han, H. J. Suh, K. B. Hong, S. Y. Kim, S. C. Min, J. Food Sci. 2016, 81, T3052.