Polymer brushes on multiwalled carbon nanotubes by activators regenerated by electron transfer for atom transfer radical polymerization
Tony J Aitchison
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Search for more papers by this authorCorresponding Author
Milena Ginic-Markovic
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA, AustraliaSearch for more papers by this authorMartin Saunders
Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA, Australia
Search for more papers by this authorPeter Fredericks
School of Physical and Chemical Sciences, Queensland University of Technology, G.P.O. Box 2434, Brisbane QLD 4001, Australia
Search for more papers by this authorSuresh Valiyaveettil
Materials Research Laboratory, Department of Chemistry, National University of Singapore, Singapore
Search for more papers by this authorJanis G. Matisons
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Search for more papers by this authorGeorge P. Simon
Department of Materials Engineering, Monash University, Clayton VIC 3800, Australia
Search for more papers by this authorTony J Aitchison
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Search for more papers by this authorCorresponding Author
Milena Ginic-Markovic
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA, AustraliaSearch for more papers by this authorMartin Saunders
Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA, Australia
Search for more papers by this authorPeter Fredericks
School of Physical and Chemical Sciences, Queensland University of Technology, G.P.O. Box 2434, Brisbane QLD 4001, Australia
Search for more papers by this authorSuresh Valiyaveettil
Materials Research Laboratory, Department of Chemistry, National University of Singapore, Singapore
Search for more papers by this authorJanis G. Matisons
School of Chemistry and Physical Sciences, Nanomaterials Group, Flinders University, G.P.O. Box 2100, S.A. 5001, Australia
Search for more papers by this authorGeorge P. Simon
Department of Materials Engineering, Monash University, Clayton VIC 3800, Australia
Search for more papers by this authorAbstract
The synthesis and characterization of multiwalled carbon nanotube (MWCNT) polymer brushes produced by activators regenerated by electron transfer (ARGET) in atom-transfer radical polymerization (ATRP) was discussed. The polymer brushes were synthesized by esterification of the MWCNT carboxylic acid groups with hydroxyethyl-2-bromoisobutyrate and subsequently used in ARGET ATRP. This created a well defined living polymer brush carbon nanotube of comparatively low polydispersity and a polymer layer 10 nm thick. As, ARGET ATRP uses only minute concentrations of copper (II) catalyst, and is less sensitive to air compared to other living polymerization techniques, this process is a more industry-compatible route for the commercialization of such materials. The structural and chemical properties were explored by a range of techniques including high resolution transmission electron microscopy, gel permeation chromatography, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, the polymer brush nanotubes were explored for their potential use in films and as fillers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
POLA_24872_sm_suppinfo.doc25 KB | Supporting Information |
POLA_24872_sm_suppinfoFigS1.tif6.9 MB | Supporting Information Figure 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 Ebbesen, T. W. Annu Rev Mater Sci 1994, 24, 235–264.
- 2 Majumder, M.; Chopra, N.; Hinds, B. J. J Am Chem Soc 2005, 127, 9062–9070.
- 3 Yuen, S. M.; Ma, C. C. M.; Chiang, C. L.; Lin, Y. Y.; Teng, C. C. J Polym Sci Part A: Polym Chem 2007, 45, 3349–3358.
- 4 Kang, J. Y.; Eo, S. M.; Jeon, I. Y.; Choi, Y. S.; Tan, L. S.; Baek, J. B. J Polym Sci Part A: Polym Chem 2010, 48, 1067–1078.
- 5 Mitchell, C. A.; Bahr, J.L.; Arepalli, S.; Tour, J. M.; Krishnamoorti, R. Macromolecules 2002, 35, 8825–8830.
- 6 Jin, Z.; Promoda, K. P.; Xu, G.; Goh, S. H. Chem Phys Lett 2001, 337, 43–47.
- 7 Haggenmueller, R.; Gommans, H. H.; Rinzler, A. G.; Fischer, J. E.; Winey, K. I. Chem Phys Lett 2000, 330, 219–225.
- 8 Sung, J. H.; Kim, H. S.; Jin, H. J.; Choi, H. J.; Chin, I. J. Macromolecules 2004, 37, 9899–9902.
- 9 Jeon, I. Y.; Tan, L. S.; Baek, J. B. J Polym Sci Part A: Polym Chem 2010, 48, 1962–1972.
- 10 Ginic-Markovic, M.; Matisons, J. G.; Cervini, R.; Simon, G. P.; Fredericks, P. M. Chem Mater 2006, 18, 6258–6265.
- 11 Bates, F. S.; Frederickson, G. H. Annu Rev Phys Chem 1990, 41, 525–557.
- 12 Boyer, C.; Stenzel, M. H.; Davis, T. P. J Polym Sci Part A: Polym Chem 2011, 49, 551–595.
- 13 Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Langmuir 2007, 23, 4528–4531.
- 14 Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921–2990.
- 15 Kong, H.; Gao, C.; Yan, D. J Mater Chem 2004, 14, 1401–1405.
- 16 Priftis, D.; Sakellariou, G.; Mays, J. W.; Hadjichristidis, N. J Polym Sci Part A: Polym Chem 2010, 48, 1104–1112.
- 17 Shanmugharaj. A. M.; Bae, J. H.; Nayak, R. R.; Ryu, S. H. J Polym Sci Part A: Polym Chem 2007, 45, 460–470.
- 18 Yao, Z.; Braidy, N.; Botton, G. A.; Adronov, A. J Am Chem Soc 2003, 125, 16015–16024.
- 19 Hong, C. Y.; You, Y. Z.; Wu, D.; Liu, Y.; Pan, C. Y. Macromolecules 2005, 38, 2606–2611.
- 20 You, Y. Z.; Hong, C. Y.; Pan, C. Y. Macromol Rapid Commun 2006, 27, 2001–2006.
- 21 Pei, X.; Liu, W.; Hao, J. J Polym Sci Part A: Polym Chem 2008, 46, 3014–3923.
- 22 Fragneaud, B.; Masenelli-Varlot, K.; Gonzalez-Montiel, A.; Terrones, M.; Cavaille, J. Y. Chem Phys Lett 2007, 444, 1–8.
- 23 Daugaard, A. E.; Jankova, K.; Bogelund, J.; Nielsen, J. K.; Hvilsted, S. J Polym Sci Part A: Polym Chem 2010, 48, 4594–4601.
- 24 Matrab, T.; Chancolon, J.; L'hermite, M. M.; Rouzaud, J. N.; Deniau, G.; Boudou, J. P.; Chehimi, M. M.; Delamar, M. Colloid Surf A: Physicochem Eng Aspect 2006, 287, 217–221.
- 25 Dehonor, M.; Masenelli-Varlot, K.; Gonzalez-Montiel, A.; Gautheir, C.; Cavaille, J. Y.; Terrones, H.; Terrones, M. Chem Commun 2005, 42, 5349–5351.
- 26 Zhao, X. D.; Fan, X. H.; Chen, X. F.; Chai, C. P.; Zhou, Q. F. J Polym Sci Part A: Polym Chem 2006, 44, 4656–4667.
- 27 Pei, X.; Hao, J.; Liu, W. J Phys Chem C 2007, 111, 2947–2952.
- 28 Xu, G.; Wu, W. T.; Wang, Y.; Pang, W.; Zhu, Q.; Wang, P.; You, Y. Polymer 2006, 47, 5909–5918.
- 29 Guo, G.; Yang, D.; Wang, C.; Yang, S. Macromolecules 2006, 39, 9035–9040.
- 30 Jakubowski, W.; Matyjaszewski, K. Macromolecules 2005, 38, 4139–4146.
- 31 Braunecker, W. A.; Matyjaszewski, K. Prog Polym Sci 2007, 32, 93–146.
- 32 Tsarevsky, N. V.; Braunecker, W. A.; Tang, W.; Brooks, S. J.; Matyaszewski, K.; Weisman, G. R.; Wong, E. H. J Mol Catal A: Chem 2006, 257, 132–140.
- 33 Gromada, J.; Matyjaszewski, K. Macromolecules 2001, 34, 7664–7671.
- 34 Aitchison, T. J.; Ginic-Markovic, M.; Matisons, J. G.; Simon, G. P.; Fredericks, P. M. J Phys Chem C 2007, 111, 2440–2446.
- 35 Zhang, J.; Zuo, H.; Qing, Q.; Tang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. J.. Phys. Chem. B 2003, 107, 3712–3718.
- 36 Bates, F. S.; Frederickson, G. H. Annu Rev Phys Chem 1990, 41, 525–557.
- 37 Stevens, M. P. Polymer Chemistry: An Introduction, 3rd ed.; Oxford University Press: New York, 1999.
- 38 Braunecker, W. A.; Matyjaszewski, K. Prog Polym Sci 2007, 32, 93–146.
- 39 Jakubowski, W.; Min, K.; Matyjaszewski, K. Macromolecules 2006, 39, 39–45.
- 40 Chen, H.; Yang, L.; Liang, Y.; Hao, Z.; Lu, Z. J Polym Sci Part A: Polym Chem 2009, 47, 3202–3207.
- 41 Paterson, S. M.; Brown, D. H.; Chirila, T. V.; Keen, I.; Whittaker, A. K.; Baker, M. V. J Polym Sci Part A: Polym Chem 2010, 48, 4084–4092.
- 42 Pietrasik, J.; Dong, H.; Matyjaszewski, K. Macromolecules 2006, 39, 6384–6390.
- 43 Silverstein, R. M.; Bassler, C. G.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 3rd ed.; Wiley, New York, 1974, Chapter 3, pp 73–158.
- 44 Huang, H. M.; Liu, I. C.; Chang, C. Y.; Tsai, H. C.; Hsu, C. H.; Tsiang R. C. C. J Polym Sci Part A: Polym Chem 2004, 42, 5802–5810.
- 45 Wild, S.; Kesmodel, L. L.; Apai, G. J Phys Chem B 2000, 104, 3179–3182.
- 46 Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J Am Chem Soc 2001, 123, 6536–6542.
- 47 Veloso, M. V.; Filho, A. G. S.; Filho, J. M.; Fagan, S. B.; Mota, R. Chem Phys Lett 2006, 430, 71–74.
- 48 Barros, E. B.; Filho, A. G. S.; Lemos, V.; Filho, J. M.; Fagan, S. B.; Herbst, M. H.; Rosolen, J. M.; Luengo, C. A.; Huber, J. G. Carbon 2005, 43, 2495–2500.
- 49 Curran, S. A.; Talla, J.; Dias, S.; Zhang, D.; Carroll, D.; Birx, D. J Appl Phys 2009, 105, 079711–073715.
- 50 Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629–8639.
- 51 Jakubowski, W.; Matyjaszewski, K. Macromolecules 2005, 38, 4139–4146.