Disproportionating versus nondisproportionating solvent effect in the SET-LRP of methyl acrylate during catalysis with nonactivated and activated cu(0) wire
Nga H. Nguyen
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Search for more papers by this authorCorresponding Author
Virgil Percec
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania, Pennsylvania 19104-6323Search for more papers by this authorNga H. Nguyen
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Search for more papers by this authorCorresponding Author
Virgil Percec
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Pennsylvania, Pennsylvania 19104-6323Search for more papers by this authorAbstract
The disproportionating solvent effect on the kinetics of single electron transfer living radical polymerization (SET-LRP) during catalysis with nonactivated Cu(0) wire coated with Cu2O and activated Cu(0) wire free of Cu2O was studied. In solvents such as dimethyl sulfoxide, MeOH and ethylene carbonate that in conjunction with Me6-TREN promote extensitve disproportionation of Cu(I)X, faster polymerizations were achieved upon switching from nonactivated Cu(0) wire to activated Cu(0) wire. The results showed that the substantial rate enhancement was accompanied with excellent control of molecular weight evolution and distribution, and high fidelity of chain-end functionality. This can be attributed to a more effective equilibrium between activation and deactivation in the presence of Cu(0) free of Cu2O. In nondisproportionating solvents, the kinetics of SET-LRP of methyl acrylate catalyzed by activated Cu(0) wire resembled that of the polymerizations catalyzed by nonactivated wire. This is the result of a competing effect between rapid activation and insufficient disproportionation. The absence of disproportionation effectively leads to the lack of first order kinetics, broad molecular weight distribution, significant loss of bromide chain-end functionality, and therefore, the absence of a living polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011
REFERENCES AND NOTES
- 1 Rosen, B. M.; Percec, V. Chem Rev 2009, 109, 5069–5119.
- 2 Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Monteiro, M.; Barboiu, B.; Weichold, O.; Asandei, A. D.; Mitchell, C. M. J Am Chem Soc 2002, 124, 4940–4941.
- 3 Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. J Am Chem Soc 2006, 128, 14156–14165.
- 4 Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Weichold, O. J Polym Sci Part A: Polym Chem 2003, 41, 3283–3299.
- 5 Jiang, X.; Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 2716–2721.
- 6 Fleischmann, S.; Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 1190–1196.
- 7 Lligadas, G.; Percec, V. J Polym Sci Part A: Polym Chem 2008, 46, 3174–3181.
- 8 Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 4889–4893.
- 9 Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 4884–4888.
- 10 Voepel, J.; Edlund, U.; Albertsson, A.-C.; Percec, V. Biomacromolecules 2011, 12, 253–259.
- 11 Voepel, J.; Edlund, U.; Albertsson, A.-C. J Polym Sci Part A: Polym Chem 2011, 49, 2366–2372.
- 12 Nguyen, N. H.; Rosen, B. M.; Lligadas, G.; Percec, V. Macromolecules 2009, 42, 2379–2386.
- 13 Lligadas, G.; Ladislaw, J. S.; Guliashvili, T.; Percec, V. J Polym Sci Part A: Polym Chem 2008, 46, 278–288.
- 14 Lligadas, G.; Percec, V. J Polym Sci Part A: Polym Chem 2007, 45, 4684–4695.
- 15 Zhai, S.; Wang, B.; Feng, C.; Li, Y.; Dong, Y.; Hu, J.; Lu, G.; Huang, X. J Polym Sci Part A: Polym Chem 2009, 48, 647–655.
- 16 Nguyen, N. H.; Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 1752–1763.
- 17 Tang, X.; Liang, X.; Yang, Q.; Fan, X.; Shen, Z.; Zhou, Q. J Polym Sci Part A: Polym Chem 2009, 47, 4420–4427.
- 18 Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 2243–2250.
- 19 Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 2236–2242.
- 20 Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 2251–2255.
- 21 Jones, M. W.; Gibson, M. I.; Mantovani, G.; Haddleton, D. M. Poly Chem 2011, 2, 572–574.
- 22 Chen, G.; Wright, P. M.; Geng, J.; Mantovani, G.; Haddleton, D. M. Chem Commun 2008, 1097–1099.
- 23 Liu, X.-H.; Zhang, G.-B.; Li, B.-X.; Bai, Y.-G.; Li, Y.-S. J Polym Sci Part A: Polym Chem 2010, 48, 5439–5445.
- 24 Barboiu, B.; Percec, V. Macromolecules 2001, 34, 8626–8636.
- 25 Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. J Polym Sci Part A: Polym Chem 2009, 47, 3940–3948.
- 26 Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V. J Polym Sci Part A: Polym Chem 2009, 47, 3931–3939.
- 27 Whittaker, M. R.; Urbani, C. N.; Monteiro, M. J. J Polym Sci Part A: Polym Chem 2008, 46, 6346–6357.
- 28 Jing, R.; Wang, G.; Zhang, Y.; Huang, J. Macromolecules 2010, 44, 805–810.
- 29 Feng, C.; Shen, Z.; Li, Y.; Gu, L.; Zhang, Y.; Lu, G.; Huang, X. J Polym Sci Part A: Polym Chem 2009, 47, 1811–1824.
- 30 Ding, S.; Floyd, J. A.; Walters, K. B. J Polym Sci Part A: Polym Chem 2009, 47, 6552–6560.
- 31 Turan, E.; Caykara, T. J Polym Sci Part A: Polym Chem 2010, 48, 5842–5847.
- 32 Zoppe, J. O.; Habibi, Y.; Rojas, O. J.; Venditti, R. A.; Johansson, L. -S.; Efimenko, K.; Osterberg, M.; Laine, J. Biomacromolecules 2010, 11, 2683–2691.
- 33 Bebis, K.; Jones, M. W.; Haddleton, D. M.; Gibson, M. I. Poly Chem 2011, 2, 975–982.
- 34 Vlček, P.; Raus, V.; Janata, M.; Kříž, J.; Sikora, A. J Polym Sci Part A: Polym Chem 2010, 49, 164–173.
- 35 Rosen, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. J Polym Sci Part A: Polym Chem 2009, 47, 5606–5628.
- 36 Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2008, 46, 5663–5697.
- 37 Tsarevsky, N. V.; Braunecker, W. A.; Matyjaszewski, K. J Organomet Chem 2007, 692, 3212–3222.
- 38 Gillies, M. B.; Matyjaszewski, K.; Norrby, P. -O.; Pintauer, T.; Poli, R.; Richard, P. Macromolecules 2003, 36, 8551–8559.
- 39 Pintauer, T.; McKenzie, B.; Matyjaszewski, K. In Advances in Controlled/Living Radical Polymerization; American Chemical Society: Washington DC, 2003, pp 130–147.
- 40 Braunecker, W. A.; Matyjaszewski, K. J Mol Catal A: Chem 2006, 254, 155–164.
- 41 Nguyen, N. H.; Percec, V. J Polym Sci Part A: Polym Chem 2010, 48, 5109–5119.
- 42 Percec, V.; Asandei, A. D.; Asgarzadeh, F.; Bera, T. K.; Barboiu, B. J Polym Sci Part A: Polym Chem 2000, 38, 3839–3843.
- 43 Percec, V.; Barboiu, B.; van der Sluis, M. Macromolecules 1998, 31, 4053–4056.
- 44 Fujita, E.; Konno, S.; Fujiyama, S.; Kawamoto, H. Japan Patent P2010059001(A); Dowa Electronics Materials Co., 2010.
- 45 Littrell, D. M.; Bowers, D. H.; Tatarchuk, B. J. J Chem Soc Faraday Trans 1 1987, 83, 3271–3282.
- 46 Shitara, M.; Hirai, H. U.S. Patent 20080011125; Fujifilm Co., Japan, 2008.
- 47 Littrell, D. M.; Tatarchuk, B. J. J Vac Sci Technol A: Vac Surf Films 1986, 4, 1608–1612.
- 48 Levere, M. E.; Willoughby, I.; O'donohue, S.; Cuendias, A.; Grice, A. J.; Fidge, C.; Becer, C. R.; Haddleton, D. M. Polym Chem 2010, 1, 1086–1094.
- 49 Nguyen, N. H.; Rosen, B. M.; Jiang, X.; Fleischmann, S.; Percec, V. J Polym Sci Part A: Polym Chem 2009, 47, 5577–5590.
- 50 Percec, V.; Barboiu, B.; Grigoras, C.; Bera, T. K. J Am Chem Soc 2003, 125, 6503–6516.
- 51 Percec, V.; Grigoras, C.; Bera, T. K.; Barboiu, B.; Bissel, P. J Polym Sci Part A: Polym Chem 2005, 43, 4894–4906.
- 52 van der Sluis, M.; Barboiu, B.; Pesa, N.; Percec, V. Macromolecules 1998, 31, 9409–9412.
- 53 Feiring, A. E.; Wonchoba, E. R.; Davidson, F.; Percec, V.; Barboiu, B. J Polym Sci Part A: Polym Chem 2000, 38, 3313–3335.
- 54 Percec, V.; Asandei, A. D.; Asgarzadeh, F.; Barboiu, B.; Holerca, M. N.; Grigoras, C. J Polym Sci Part A: Polym Chem 2000, 38, 4353–4361.
- 55 Percec, V.; Barboiu, B.; Bera, T. K.; van der Sluis, M.; Grubbs, R. B.; Frechet, J. M. J. J Polym Sci Part A: Polym Chem 2000, 38, 4776–4791.
- 56 Percec, V.; Grigoras, C.; Kim, H.-J. J Polym Sci Part A: Polym Chem 2004, 42, 505–513.
- 57 Lligadas, G.; Percec, V. J Polym Sci Part A: Polym Chem 2008, 46, 6880–6895.
- 58 Lligadas, G.; Rosen, B. M.; Monteiro, M. J.; Percec, V. Macromolecules 2008, 41, 8360–8364.
- 59 Jiang, X.; Fleischmann, S.; Nguyen, N. H.; Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2009, 47, 5591–5605.
- 60 Lligadas, G.; Rosen, B. M.; Bell, C. A.; Monteiro, M. J.; Percec, V. Macromolecules 2008, 41, 8365–8371.
- 61 Lligadas, G.; Percec, V. J Polym Sci Part A: Polym Chem 2008, 46, 2745–2754.
- 62 Rosen, B. M.; Percec, V. J Polym Sci Part A: Polym Chem 2007, 45, 4950–4964.
- 63 Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH: Weinheim, 2003.
- 64 Monteiro, M. J.; Guliashvili, T.; Percec, V. J Polym Sci Part A: Polym Chem 2007, 45, 1835–1847.
- 65 Fischer, H. Chem Rev 2001, 101, 3581–3610.
- 66
Fischer, H.
J Polym Sci Part A: Polym Chem
1999,
37,
1885–1901.
10.1002/(SICI)1099-0518(19990701)37:13<1885::AID-POLA1>3.0.CO;2-1 CAS Web of Science® Google Scholar
- 67 Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921–2990.
- 68 Ohno, K.; Goto, A.; Fukuda, T.; Xia, J.; Matyjaszewski, K. Macromolecules 1998, 31, 2699–2701.
- 69 Ciampolini, M.; Nardi, N. Inorg Chem 1966, 5, 41–44.