Two-dimensional sp2-carbon-linked covalent organic framework for large-capacity and long-life Na metal batteries
Rong Zhuang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorChangzhen Qu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorJiaying Yang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorShunqi Xu
Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, Halle, Germany
Search for more papers by this authorCorresponding Author
Fei Xu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Correspondence
Fei Xu, State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Email: [email protected]
Search for more papers by this authorRong Zhuang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorChangzhen Qu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorJiaying Yang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Search for more papers by this authorShunqi Xu
Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, Halle, Germany
Search for more papers by this authorCorresponding Author
Fei Xu
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
Correspondence
Fei Xu, State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Email: [email protected]
Search for more papers by this authorRong Zhuang and Changzhen Qu contributed equally to this study.
Abstract
Na metal batteries are regarded as an encouraging route for energy-dense and low-cost battery systems. However, the unstable and irreversible Na plating/stripping, caused by the uncontrolled dendritic Na growth, prevents their practical applications. Herein, a two-dimensional sp2-carbon-linked covalent organic framework (cyano-sp2c-COF) is adopted as seeding/hosting coating layer for a highly stable interface with long cycling life, large capacity, and high Na utilization. Benefit from the features of a fully π-conjugated structure and well-defined cyano groups, cyano-sp2c-COF with superior sodiophilicity and small interface resistance can reduce the nucleation barrier, enable Na ion flux uniformity, and enhance interface stability. Ultimately, the system achieves a low nucleation overpotential of only 10 mV, a remarkable average Coulombic efficiency of 99.7% maintained over 500 cycles in half cells, and exceptional interfacial durability of 8500 h with a high accumulated capacity of 8.5 Ah cm−2 in symmetric cells. Furthermore, the symmetric cells also present a steady cycling, even increasing the depth of discharge up to 90%. As proof, full cells demonstrate a long lifespan enduring 2700 cycles with tiny capacity decay, providing valuable insights into the long-life Na batteries.
Graphical Abstract
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Supporting Information
Filename | Description |
---|---|
pol20240114-sup-0001-supinfo.pdfPDF document, 2.5 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 2021, 6, 1020.
- 2H. Wang, E. Matios, J. Luo, W. Li, Chem. Soc. Rev. 2020, 49, 3783.
- 3B. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416.
- 4J. Huang, K. Wu, G. Xu, M. Wu, S. Dou, C. Wu, Chem. Soc. Rev. 2023, 52, 4933.
- 5C. Chu, R. Li, F. Cai, Z. Bai, Y. Wang, X. Xu, N. Wang, J. Yang, S. Dou, Energy Environ. Sci. 2021, 14, 4318.
- 6S. Wu, J. Hwang, K. Matsumoto, R. Hagiwara, Adv. Energy Mater. 2023, 13, 2302468.
- 7C. Wang, Z. Sun, L. Liu, H. Ni, Q. Hou, J. Fan, R. Yuan, M. Zheng, Q. Dong, Energy Environ. Sci. 2023, 16, 3098.
- 8X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan, F. Chen, T. C. Mendes, P. C. Howlett, C. Fu, Y. Wang, X. Tan, D. J. Searles, P. Král, C. J. Hawker, A. K. Whittaker, M. Forsyth, Nat. Mater. 2022, 21, 1057.
- 9Y. Yan, Z. Liu, T. Wan, W. Li, Z. Qiu, C. Chi, C. Huangfu, G. Wang, B. Qi, Y. Yan, T. Wei, Z. Fan, Nat. Commun. 2023, 14, 3066.
- 10K. Cao, Y. Xia, H. Li, H. Huang, S. Iqbal, M. Yousaf, B. Bin Xu, W. Sun, M. Yan, H. Pan, Y. Jiang, Sci. Bull. 2024, 69, 49.
- 11C. Wang, A. C. Thenuwara, J. Luo, P. P. Shetty, M. T. McDowell, H. Zhu, S. Posada-Pérez, H. Xiong, G. Hautier, W. Li, Nat. Commun. 2022, 13, 4934.
- 12Y. Li, Q. Zhou, S. Weng, F. Ding, X. Qi, J. Lu, Y. Li, X. Zhang, X. Rong, Y. Lu, X. Wang, R. Xiao, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 2022, 7, 511.
- 13R. Zhuang, X. Zhang, C. Qu, X. Xu, J. Yang, Q. Ye, Z. Liu, S. Kaskel, F. Xu, H. Wang, Sci. Adv. 2023, 9, eadh8060.
- 14F. Xu, C. Qu, Q. Lu, J. Meng, X. Zhang, X. Xu, Y. Qiu, B. Ding, J. Yang, F. Cao, P. Yang, G. Jiang, S. Kaskel, J. Ma, L. Li, X. Zhang, H. Wang, Sci. Adv. 2022, 8, eabm7489.
- 15Y. X. Wang, H. Dong, N. Katyal, H. Hao, P. Liu, H. Celio, G. Henkelman, J. Watt, D. Mitlin, Adv. Mater. 2022, 34, 2106005.
- 16C. Wang, Y. Zheng, Z.-N. Chen, R. Zhang, W. He, K. Li, S. Yan, J. Cui, X. Fang, J. Yan, G. Xu, D. Peng, B. Ren, N. Zheng, Adv. Energy Mater. 2023, 13, 2204125.
- 17Z. Li, K. Zhu, P. Liu, L. Jiao, Adv. Energy Mater. 2022, 12, 2100359.
- 18K. Lee, Y. J. Lee, M. J. Lee, J. Han, J. Lim, K. Ryu, H. Yoon, B. H. Kim, B. J. Kim, S. W. Lee, Adv. Mater. 2022, 34, 2109767.
- 19L. Tao, A. Hu, L. Mu, D. J. Kautz, Z. Xu, Y. Feng, H. Huang, F. Lin, Adv. Funct. Mater. 2021, 31, 2007556.
- 20N. Mubarak, F. Rehman, M. Ihsan-Ul-Haq, M. Xu, Y. Li, Y. Zhao, Z. Luo, B. Huang, J. K. Kim, Adv. Energy Mater. 2022, 12, 2103904.
- 21R. Zhuang, X. Cai, C. Qu, S. He, S. Kaskel, A. Y. Shenouda, H. Wang, F. Xu, Carbon 2024, 221, 118862.
- 22X. Li, W. Ye, P. Xu, H. Huang, J. Fan, R. Yuan, M.-S. Zheng, M.-S. Wang, Q. Dong, Adv. Mater. 2022, 34, 2202898.
- 23C. Wang, H. Wang, E. Matios, X. Hu, W. Li, Adv. Funct. Mater. 2018, 28, 1802282.
- 24S. Liu, S. Tang, X. Zhang, A. Wang, Q.-H. Yang, J. Luo, Nano Lett. 2017, 17, 5862.
- 25C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585.
- 26A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
- 27Y.-W. Song, P. Shi, B.-Q. Li, X. Chen, C.-X. Zhao, W.-J. Chen, X.-Q. Zhang, X. Chen, Q. Zhang, Matter 2021, 4, 253.
- 28S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding, F. Li, J. Liu, L. Xi, M. Zhu, J. Liu, Adv. Funct. Mater. 2023, 33, 2212466.
- 29C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, Angew. Chem. Int. Ed. 2021, 60, 24915.
- 30T. Kang, C. Sun, Y. Li, T. Song, Z. Guan, Z. Tong, J. Nan, C.-S. Lee, Adv. Energy Mater. 2023, 13, 2204083.
- 31D. Guo, F. Ming, D. B. Shinde, L. Cao, G. Huang, C. Li, Z. Li, Y. Yuan, M. N. Hedhili, H. N. Alshareef, Z. Lai, Adv. Funct. Mater. 2021, 31, 2101194.
- 32D. Chen, S. Huang, L. Zhong, S. Wang, M. Xiao, D. Han, Y. Meng, Adv. Funct. Mater. 2020, 30, 1907717.
- 33V. Singh, J. Kim, B. Kang, J. Moon, S. Kim, W. Y. Kim, H. R. Byon, Adv. Energy Mater. 2021, 11, 2003735.
- 34E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang, D. Jiang, Chem 2019, 5, 1632.
- 35F. Haase, E. Troschke, G. Savasci, T. Banerjee, V. Duppel, S. Dörfler, M. M. J. Grundei, A. M. Burow, C. Ochsenfeld, S. Kaskel, B. V. Lotsch, Nat. Commun. 2018, 9, 2600.
- 36S. Xu, Z. Liao, A. Dianat, S.-W. Park, M. A. Addicoat, Y. Fu, D. L. Pastoetter, F. G. Fabozzi, Y. Liu, G. Cuniberti, M. Richter, S. Hecht, X. Feng, Angew. Chem. Int. Ed. 2022, 61, e202202492.
- 37M. Yang, C. Mo, L. Fang, J. Li, Z. Yuan, Z. Chen, Q. Jiang, X. Chen, D. Yu, Adv. Funct. Mater. 2020, 30, 2000516.
- 38Z. Xu, Z. Y. Guo, R. Madhu, F. Xie, R. X. Chen, J. Wang, M. Tebyetekerwa, Y. S. Hu, M. M. Titirici, Energy Environ. Sci. 2021, 14, 6381.
- 39H. Ye, C. Y. Wang, T. T. Zuo, P. F. Wang, Y. X. Yin, Z. J. Zheng, P. Wang, J. Cheng, F. F. Cao, Y. G. Guo, Nano Energy 2018, 48, 369.
- 40L. Wang, J. Shang, Q. Huang, H. Hu, Y. Zhang, C. Xie, Y. Luo, Y. Gao, H. Wang, Z. Zheng, Adv. Mater. 2021, 33, 2102802.
- 41J. Xiao, N. Xiao, K. Li, L. Zhang, X. Ma, Y. Li, C. Leng, J. Qiu, Adv. Funct. Mater. 2022, 32, 2111133.
- 42Z. J. Zheng, X. X. Zeng, H. Ye, F. F. Cao, Z. B. Wang, ACS Appl. Mater. Interfaces 2018, 10, 30417.
- 43C. X. Chu, N. N. Wang, L. L. Li, L. D. Lin, F. Tian, Y. L. Li, J. Yang, S. X. Dou, Y. T. Qian, Energy Storage Mater. 2019, 23, 137.
- 44L. Zhang, X. Zhu, G. Wang, G. Xu, M. Wu, H. K. Liu, S. X. Dou, C. Wu, Small 2021, 17, e2007578.
- 45G. Y. Wang, F. F. Yu, Y. Zhang, Y. J. Zhang, M. Zhu, G. Xu, M. H. Wu, H. K. Liu, S. X. Dou, C. Wu, Nano Energy 2021, 79, 105457.
- 46L. Li, M. Zhu, G. Wang, F. Yu, L. Wen, H.-K. Liu, S.-X. Dou, C. Wu, J. Energy Chem. 2022, 71, 595.
- 47X. Y. Cui, Y. J. Wang, H. D. Wu, X. D. Lin, S. Tang, P. Xu, H. G. Liao, M. S. Zheng, Q. F. Dong, Adv. Sci. 2021, 8, 2003178.
- 48Y. Zhuang, D. Deng, L. Lin, B. Liu, S. Qu, S. Li, Y. Zhang, B. Sa, L. Wang, Q. Wei, L. Mai, D.-L. Peng, Q. Xie, Nano Energy 2022, 97, 107202.
- 49M. Guo, H. L. Dou, W. Y. Zhao, X. L. Zhao, B. X. Wan, J. H. Wang, Y. T. Yan, X. M. Wang, Z. F. Ma, X. W. Yang, Nano Energy 2020, 70, 104479.
- 50J. X. Wu, P. Zou, M. Ihsan-Ul-Haq, N. Mubarak, A. Susca, B. Li, F. Ciucci, J. K. Kim, Small 2020, 16, 2003815.
- 51A. X. Wang, X. Hu, H. Tang, C. Zhang, S. Liu, Y. W. Yang, Q. H. Yang, J. Luo, Angew. Chem. Int. Ed. 2017, 56, 11921.
- 52J. M. Luo, C. Wang, H. Wang, X. Hu, E. Matios, X. Lu, W. Zhang, X. Tao, W. Li, Adv. Funct. Mater. 2019, 29, 1805946.
- 53L. Zhao, Z. Hu, Z. Huang, Y. Tao, W.-H. Lai, A. Zhao, Q. Liu, J. Peng, Y. Lei, Y.-X. Wang, Y. Cao, C. Wu, S.-L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2022, 12, 2200990.
- 54L. Mo, A.-L. Chen, Y. Ouyang, W. Zong, Y.-E. Miao, T. Liu, ACS Appl. Mater. Interfaces 2021, 13, 48634.
- 55Z. Li, H. Qin, W. Tian, L. Miao, K. Cao, Y. Si, H. Li, Q. Wang, L. Jiao, Adv. Funct. Mater. 2023, 34, 2301554.