Structure–activity relationship of alkanes and alkane derivatives for the abilities of C(sp3)H bonds toward their H-atom transfer reactions
Corresponding Author
Yan-Hua Fu
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorLiguo Yang
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorZhongyuan Zhou
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorFang Wang
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorCorresponding Author
Guang-Bin Shen
School of Medical Engineering, Jining Medical University, Jining, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xiao-Qing Zhu
The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yan-Hua Fu
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorLiguo Yang
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorZhongyuan Zhou
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorFang Wang
College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, China
Search for more papers by this authorCorresponding Author
Guang-Bin Shen
School of Medical Engineering, Jining Medical University, Jining, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xiao-Qing Zhu
The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
Correspondence
Yan-Hua Fu, College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
Email: [email protected]
Guang-Bin Shen, School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China.
Email: [email protected]
Xiao-Qing Zhu, The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Email: [email protected]
Search for more papers by this authorAbstract
Hydrogen atom-donating ability of alkane is a research hotspot and has been extensively studied. In this article, the second-order rate constants of 20 hydrogen atom transfer (HAT) reactions between aliphatic, benzylic, and allylic alkanes and alkane derivatives with CumO• in acetonitrile at 298 K were studied. The thermo-kinetic parameter ΔG≠o(XH), bond dissociation free energy ΔGo(XH), and kinetic intrinsic resistance energy ΔG≠XH/X were determined and used to evaluate the H-donating abilities of these substrates in thermodynamics, kinetics, and HAT reactions. Structure–activity relationships including the factors (electronic, stereoelectronic, and steric effects), introduction of CH3, Ph, or Cl in alkanes, and introduction of N atom in cycloalkane were discussed carefully. The results show that the order of H-donating abilities is allylic alkanes > cycloalkanes > chain alkanes ≈ benzylic alkanes > haloalkanes. The introduction of CH3, Ph, or Cl in alkanes and the introduction of N atom to the carbon ring reduce ΔGo(XH) but increase ΔG≠XH/X, and ΔG≠o(XH) is the synthesis result of these two parameters. The reliability of ΔG≠o(XH) was verified, and the accuracy and reliability of the parameters were proved. Through the study of this paper, not only the ΔGo(XH), ΔG≠XH/X, and ΔG≠o(XH) of these alkanes and derivatives in HAT reaction can be quantitatively evaluated but also the structure–activity relationship of alkane is clearly researched.
Supporting Information
Filename | Description |
---|---|
poc4550-sup-0001- Supp Information.docWord document, 330.5 KB |
Table S1. Second-order rate constants (k2), activation free energies (ΔG≠XH/Y) of HAT reactions (XH/CumO•) and the references in acetonitrile at 298 K. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1(a) K. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302. (b) L. Valgimigli, D. A. Pratt, Acc. Chem. Res. 2015, 48, 966. (c) K. U. Ingold, D. A. Pratt, Chem. Rev. 2014, 114, 9022. (d) G. Litwinienko, K. U. Ingold, Acc. Chem. Res. 2007, 40, 222.
- 2(a) Y. Shang, X. Li, Z. Li, L. Shen, J. Zhou, R. Hu, K. Chen, J. Mol. Struct. 2022, 1260, 132830. (b) M. R. Antonijević, E. H. Avdović, D. M. Simijonović, Ž. B. Milanović, A. D. Amić, Z. S. Marković, Int. J. Mol. Sci. 2022, 23, 490.
- 3(a) N. Holmberg-Douglas, D. A. Nicewicz, Chem. Rev. 2022, 122, 1925. (b) Y. Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, 9433.
- 4(a) S. Manuel, R. Sivasubramanian, R. Gul, M. Ahmad Dar, Chem. Asian J. 2020, 15, 4256. (b) S. Zhang, J. Shi, Y. Chen, Q. Huo, W. Li, Y. Wu, Y. Sun, Y. Zhang, X. Wang, Z. Jiang, ACS Catal. 2020, 10, 4967.
- 5(a) G.-B. Shen, B.-C. Qian, Y.-H. Fu, X.-Q. Zhu, Org. Chem. Front. 2022, 9, 6001. (b) G.-B. Shen, L. Xie, Y.-X. Wang, T.-Y. Gong, B.-Y. Wang, Y.-H. Hu, Y.-H. Fu, M. Yan, ACS Omega 2021, 6, 23621. (c) J.-D. Yang, B.-L. Chen, X.-Q. Zhu, J. Phys. Chem. B 2018, 122, 6888. (d) X.-Q. Zhu, Y. Tan, C.-T. Cao, J. Phys. Chem. B 2010, 114, 2058. (e) X.-Q. Zhu, J.-Y. Zhang, J.-P. Cheng, J. Org. Chem. 2006, 71, 7007.
- 6K. Xia, G.-B. Shen, X.-Q. Zhu, Org. Biomol. Chem. 2015, 13, 6255.
- 7M. Wunderer, R. Markt, N. Lackner, A. O. Wagner, Sci. Total Environ. 2022, 809, 151112.
- 8D. Braga, D. Last, M. Hasan, H. Guo, D. Leichnitz, Z. Uzum, I. Richter, F. Schalk, C. Beemelmanns, C. Hertweck, G. Lackner, ACS Chem. Biol. 2019, 14, 2088.
- 9(a) M. C. Foti, C. Daquino, Chem. Commun. 2006, 3252. (b) M. C. Foti, C. Daquino, I. D. Mackie, G. A. DiLabio, K. U. Ingold, J. Org. Chem. 2008, 73, 9270. (c) M. C. Oti, R. Amorati, G. F. Edulli, C. Daquino, D. A. Pratt, K. U. Ingold, J. Org. Chem. 2010, 75, 4434. (d) R. Amorati, S. Menichetti, C. Viglianisi, M. C. Foti, Chem. Commun. 2012, 48, 11904.
- 10J. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961.
- 11M. Salamone, R. Amorati, S. Menichetti, C. Viglianisi, M. Bietti, J. Org. Chem. 2014, 79, 6196.
- 12(a) M. Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895. (b) M. Salamone, G. A. DiLabio, M. Bietti, J. Am. Chem. Soc. 2011, 133, 16625. (c) M. Salamone, R. Martella, M. Bietti, J. Org. Chem. 2012, 77, 8556.
- 13M. Salamone, M. Milan, G. A. DiLabio, M. Bietti, J. Org. Chem. 2014, 79, 7179.
- 14Y.-H. Fu, Z. Wang, Y. Zhang, G.-B. Shen, X.-Q. Zhu, ChemistrySelect 2022, 7, e202202625.
- 15M. Salamone, M. Galeotti, E. Romero-Montalvo, J. A. van Santen, B. D. Groff, J. M. Mayer, G. A. DiLabio, M. Bietti, J. Am. Chem. Soc. 2021, 143, 11759.
- 16M. Salamone, G. A. DiLabio, M. Bietti, J. Org. Chem. 2012, 77, 10479.
- 17M. Finn, R. Friedline, N. K. Suleman, C. J. Wohl, J. M. Tanko, J. Am. Chem. Soc. 2004, 126, 7578.
- 18Z. B. Alfassi, R. E. Huie, P. J. Neta, Phys. Chem. 1993, 97, 7253.
- 19K. Ohkubo, Y. Moro-oka, S. Fukuzumi, Org. Biomol. Chem. 2006, 4, 999.
- 20J. Laleve, X. Allonas, J.-P. Fouassier, K. U. Ingold, J. Org. Chem. 2008, 73, 6489.
- 21A. Wu, J. M. Mayer, J. Am. Chem. Soc. 2008, 130, 14745.
- 22M. Salamone, L. Mangiacapra, M. Bietti, J. Org. Chem. 2015, 80, 1149.
- 23X.-Q. Zhu, F.-H. Deng, J.-D. Yang, X.-T. Li, Q. Chen, N.-P. Lei, F.-K. Meng, X.-P. Zhao, S.-H. Han, E.-J. Hao, Y.-Y. Mu, Org. Biomol. Chem. 2013, 11, 6071.
- 24Y.-H. Fu, G.-B. Shen, Y. Li, L. Yuan, J.-L. Li, L. Li, A.-K. Fu, J.-T. Chen, B.-L. Chen, L. Zhu, X.-Q. Zhu, ChemistrySelect 2017, 2, 904.
- 25Y.-H. Fu, G.-B. Shen, K. Wang, X.-Q. Zhu, ChemistrySelect 2021, 6, 8007.
- 26Y.-H. Fu, Z. Wang, K. Wang, G.-B. Shen, X.-Q. Zhu, RSC Adv. 2022, 12, 27389.
- 27Y.-H. Fu, K. Wang, G.-B. Shen, X.-Q. Zhu, J. Phys. Org. Chem. 2022, 35, e4358.
- 28Y.-H. Fu, G.-B. Shen, K. Wang, X.-Q. Zhu, ACS Omega 2022, 7, 25555.
- 29Y.-H. Fu, C. Geng, G.-B. Shen, K. Wang, X.-Q. Zhu, ACS Omega 2022, 7, 26416.
- 30Y.-H. Fu, Y. Zhang, F. Wang, L. Zhao, G.-B. Shen, X.-Q. Zhu, RSC Adv. 2023, 13, 3295.
- 31Y.-H. Fu, F. Wang, L. Zhao, Y. Zhang, G.-B. Shen, X.-Q. Zhu, ChemistrySelect 2023, 8, e202204789.
- 32http://pka.luoszgroup.com/bde_prediction
- 33Q. Yang, Y. Li, J. D. Yang, Y. Liu, L. Zhang, S. Luo, J. P. Cheng, Angew. Chem. Int. Ed. 2020, 59, 19282.
- 34X.-M. Zhang, J. W. Bruno, E. Enyinnaya, J. Org. Chem. 1998, 63, 4671.
- 35M. Salamone, G. Anastasi, M. Bietti, G. A. DiLabio, Org. Lett. 2011, 13, 260.