How to overcome endosomal entrapment of cell-penetrating peptides to release the therapeutic potential of peptides?
Corresponding Author
Ferran Nadal-Bufí
School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
Correspondence
Ferran Nadal-Bufí, School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia.
Email: [email protected]
Search for more papers by this authorSónia Troeira Henriques
School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
Search for more papers by this authorCorresponding Author
Ferran Nadal-Bufí
School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
Correspondence
Ferran Nadal-Bufí, School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia.
Email: [email protected]
Search for more papers by this authorSónia Troeira Henriques
School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
Search for more papers by this authorFunding information: Australian Research Council, Grant/Award Number: FT150100398; Queensland University of Technology, Grant/Award Number: Postgraduate Research Award
Abstract
Peptides gained a renascent interest as alternative pharmaceuticals, and in particular as anticancer drugs to inhibit intracellular proteins involved in cancer pathways, inaccessible to other pharmaceutical agents. However, the use of peptides as therapeutics is still limited by difficulties in reaching the protein target located in the cytosol. Cell penetrating peptides (CPPs) are being explored as tools to deliver therapeutic peptides inside cells, but they often enter cells using endocytic pathways and become entrapped inside endosomes. Therefore, a strategy to unleash the potential of peptides as therapeutics is to control the release of CPPs from endosomes. In this review we summarize recent strategies employed to improve endosomal escape of CPPs. Lessons learned from these studies can guide the design of CPPs as tools to deliver peptide sequences able to inhibit cancer targets and accelerate their development as therapeutics.
Graphical Abstract
CONFLICT OF INTEREST
The authors declare no competing interests.
REFERENCES
- 1J. L. Lau, M. K. Dunn, Bioorg. Med. Chem. 2018, 26, 2700.
- 2A. Sorolla, E. Wang, E. Golden, C. Duffy, S. T. Henriques, A. D. Redfern, P. Blancafort, Oncogene 2020, 39, 1167.
- 3F. Touti, Z. P. Gates, A. Bandyopadhyay, G. Lautrette, B. L. Pentelute, Nat. Chem. Biol. 2019, 15, 410.
- 4M. Pelay-Gimeno, A. Glas, O. Koch, T. N. Grossmann, Angew. Chem. Int. Ed. Engl. 2015, 54, 8896.
- 5W. L. Lian, B. S. Jiang, Z. Q. Qian, D. H. Pei, J. Am. Chem. Soc. 2014, 136, 9830.
- 6A. Borrelli, A. L. Tornesello, M. L. Tornesello, F. M. Buonaguro, Molecules 2018, 23, 295.
- 7A. D. Frankel, C. O. Pabo, Cell 1988, 55, 1189.
- 8Y. H. Huang, S. Chaousis, O. Cheneval, D. J. Craik, S. T. Henriques, Front. Pharmacol. 2015, 6, 17.
- 9M. Gallo, S. Defaus, D. Andreu, Arch Biochem. Biophys. 2019, 661, 74.
- 10D. Fujiwara, H. Kitada, M. Oguri, T. Nishihara, M. Michigami, K. Shiraishi, E. Yuba, I. Nakase, H. Im, S. Cho, J. Y. Joung, S. Kodama, K. Kono, S. Ham, I. Fujii, Angew. Chem. Int. Ed. Engl. 2016, 55, 10612.
- 11A. Eguchi, S. F. Dowdy, Trends Pharmacol. Sci. 2009, 30, 341.
- 12R. H. Mo, J. L. Zaro, W. C. Shen, Mol. Pharm. 2012, 9, 299.
- 13W. L. Munyendo, H. Lv, H. Benza-Ingoula, L. D. Baraza, J. Zhou, Biomolecules 2012, 2, 187.
- 14I. Nakase, G. Tanaka, S. Futaki, Mol. Biosyst. 2013, 9, 85 5.
10.1039/c2mb25467k Google Scholar
- 15S. Dissanayake, W. A. Denny, S. Gamage, V. Sarojini, J. Controlled Release 2017, 250, 62.
- 16C. P. Cerrato, K. Kunnapuu, U. Langel, Expert Opin. Drug Deliv. 2017, 14, 245.
- 17G. Guidotti, L. Brambilla, D. Rossi, Trends Pharmacol. Sci. 2017, 38, 406.
- 18I. Nakase, A. Tadokoro, N. Kawabata, T. Takeuchi, H. Katoh, K. Hiramoto, M. Negishi, M. Nomizu, Y. Sugiura, S. Futaki, Biochemistry 2007, 46, 49 2.
- 19P. A. Gurnev, S. T. Yang, K. C. Melikov, L. V. Chernomordik, S. M. Bezrukov, Biophys. J. 2013, 104, 1933.
- 20S. T. Henriques, M. N. Melo, M. A. R. B. Castanho, Biochem. J. 2006, 399, 1.
- 21C. K. Wang, H. P. Wacklin, D. J. Craik, J. Biol. Chem. 2012, 287, 43884.
- 22H. D. Herce, A. E. Garcia, M. C. Cardoso, J. Am. Chem. Soc. 2014, 136, 17459.
- 23I. M. Kaplan, J. S. Wadia, S. F. Dowdy, J. Controlled Release 2005, 102, 247.
- 24F. Madani, S. Lindberg, U. Langel, S. Futaki, A. Graslund, J. Biophys. 2011, 2011, 414729.
- 25T. Y. Wang, Y. Sun, N. Muthukrishnan, A. Erazo-Oliveras, K. Najjar, J. P. Pellois, J. Biol. Chem. 2016, 291, 7902.
- 26J. C. LeCher, S. J. Nowak, J. L. McMurry, Biomol. Concepts 2017, 8, 131.
- 27A. Erazo-Oliveras, N. Muthukrishnan, R. Baker, T. Y. Wang, J. P. Pellois, Pharmaceuticals (Basel) 2012, 5, 1177.
- 28S. A. Smith, L. I. Selby, A. P. R. Johnston, G. K. Such, Bioconjugate Chem. 2019, 30, 263.
- 29I. Neundorf, R. Rennert, J. Hoyer, F. Schramm, K. Lobner, I. Kitanovic, S. Wolfl, Pharmaceuticals (Basel) 2009, 2, 49.
- 30E. J. Dufourc, S. Buchoux, J. Toupe, M. A. Sani, F. Jean-Francois, L. Khemtemourian, A. Grelard, C. Loudet-Courreges, M. Laguerre, J. Elezgaray, B. Desbat, B. Odaert, Curr. Protein Pept. Sci. 2012, 13, 620.
- 31K. Fosgerau, T. Hoffmann, Drug Discov. Today 2015, 20, 122.
- 32A. K. Varkouhi, M. Scholte, G. Storm, H. J. Haisma, J. Controlled Release 2011, 151, 220.
- 33T. F. Martens, K. Remaut, J. Demeester, S. C. De Smedt, K. Braeckmans, Nano Today 2014, 9, 344.
- 34D. H. Pei, M. Buyanova, Bioconjugate Chem. 2019, 30, 273.
- 35D. W. Pack, D. Putnam, R. Langer, Biotechnol. Bioeng. 2000, 67, 217.
10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 36N. D. Sonawane, F. C. Szoka, A. S. Verkman, J. Biol. Chem. 2003, 278, 44826.
- 37D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discov. 2005, 4, 581.
- 38R. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, T. L. Andresen, Mol. Ther. 2013, 21, 149.
- 39L. M. P. Vermeulen, S. C. De Smedt, K. Remaut, K. Braeckmans, Eur. J. Pharm. Biopharm. 2018, 129, 184.
- 40R. K. Tweten, Infect. Immun. 2005, 73, 6199.
- 41J. Gruenberg, F. G. van der Goot, Nat. Rev. Mol. Cell Biol. 2006, 7, 495.
- 42H. D. Herce, A. E. Garcia, J. Litt, R. S. Kane, P. Martin, N. Enrique, A. Rebolledo, V. Milesi, Biophys. J. 2009, 97, 191 7.
- 43J. S. Wadia, R. V. Stan, S. F. Dowdy, Nat. Med. 2004, 10, 310.
- 44J. S. Appelbaum, J. R. LaRochelle, B. A. Smith, D. M. Balkin, J. M. Holub, A. Schepartz, Chem. Biol. 2012, 19, 819.
- 45T. Bus, A. Traeger, U. S. Schubert, J. Mater. Chem. B 2018, 6, 6904.
- 46Z. Qian, A. Martyna, R. L. Hard, J. Wang, G. Appiah-Kubi, C. Coss, M. A. Phelps, J. S. Rossman, D. Pei, Biochemistry 2016, 55, 2601.
- 47G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 11 2.
- 48T. Kobayashi, M. H. Beuchat, J. Chevallier, A. Makino, N. Mayran, J. M. Escola, C. Lebrand, P. Cosson, T. Kobayashi, J. Gruenberg, J. Biol. Chem. 2002, 277, 32157.
- 49H. Matsuo, J. Chevallier, N. Mayran, I. Le Blanc, C. Ferguson, J. Faure, N. S. Blanc, S. Matile, J. Dubochet, R. Sadoul, R. G. Parton, F. Vilbois, J. Gruenberg, Science 2004, 303, 531.
- 50W. Li, F. Nicol, F. C. Szoka Jr., Adv. Drug Deliv. Rev. 2004, 56, 96 7.
- 51M. Meyer, A. Philipp, R. Oskuee, C. Schmidt, E. Wagner, J. Am. Chem. Soc. 2008, 130, 3272.
- 52R. Chen, S. Khormaee, M. E. Eccleston, N. K. Slater, Biomaterials 2009, 30, 1954.
- 53S. Kobayashi, I. Nakase, N. Kawabata, H. H. Yu, S. Pujals, M. Imanishi, E. Giralt, S. Futaki, Bioconjugate Chem. 2009, 20, 953.
- 54P. Lonn, A. D. Kacsinta, X. S. Cui, A. S. Hamil, M. Kaulich, K. Gogoi, S. F. Dowdy, Sci. Rep. 2016, 6, 32301.
- 55B. Algayer, A. O'Brien, A. Momose, D. J. Murphy, W. Procopio, D. M. Tellers, T. J. Tucker, Molecules 2019, 24, 2079.
- 56I. Ullah, K. Chung, J. Beloor, J. Kim, M. Cho, N. Kim, K. Y. Lee, P. Kumar, S. K. Lee, J. Drug Targeting 2017, 25, 320.
- 57S. L. Lo, S. Wang, Biomaterials 2008, 29, 2408.
- 58G. Li, Y. Gao, C. Gong, Z. Han, L. Qiang, Z. Tai, J. Tian, S. Gao, ACS Appl. Mater. Interfaces 2019, 11, 39513.
- 59F. Salomone, F. Cardarelli, M. Di Luca, C. Boccardi, R. Nifosi, G. Bardi, L. Di Bari, M. Serresi, F. Beltram, J. Controlled Release 2012, 163, 29 3.
- 60T. Del Guidice, J. P. Lepetit-Stoffaes, L. J. Bordeleau, J. Roberge, V. Theberge, C. Lauvaux, X. Barbeau, J. Trottier, V. Dave, D. C. Roy, B. Gaillet, A. Garnier, D. Guay, PLoS One 2018, 13, 195558.
- 61S. Krishnamurthy, C. Wohlford-Lenane, S. Kandimalla, G. Sartre, D. K. Meyerholz, V. Theberge, S. Hallee, A. M. Duperre, T. Del'Guidice, J. P. Lepetit-Stoffaes, X. Barbeau, D. Guay, P. B. McCray Jr., Nat. Commun. 2019, 10, 4906.
- 62M. Li, Y. Tao, Y. L. Shu, J. R. LaRochelle, A. Steinauer, D. Thompson, A. Schepartz, Z. Y. Chen, D. R. Liu, J. Am. Chem. Soc. 2015, 137, 14084.
- 63M. Akishiba, T. Takeuchi, Y. Kawaguchi, K. Sakamoto, H. H. Yu, I. Nakase, T. Takatani-Nakase, F. Madani, A. Graslund, S. Futaki, Nat. Chem. 2017, 9, 751.
- 64Z. Qian, J. R. LaRochelle, B. Jiang, W. Lian, R. L. Hard, N. G. Selner, R. Luechapanichkul, A. M. Barrios, D. Pei, Biochemistry 2014, 53, 4034.
- 65K. Najjar, A. Erazo-Oliveras, D. J. Brock, T. Y. Wang, J. P. Pellois, J. Biol. Chem. 2017, 292, 847.
- 66K. Weise, J. Reed, ChemBioChem 2008, 9, 934.
- 67K. J. Cross, S. A. Wharton, J. J. Skehel, D. C. Wiley, D. A. Steinhauer, EMBO J. 2001, 20, 4432.
- 68X. Han, J. H. Bushweller, D. S. Cafiso, L. K. Tamm, Nat. Struct. Biol. 2001, 8, 715.
- 69S. Schmidt, M. J. W. Adjobo-Hermans, R. Wallbrecher, W. P. R. Verdurmen, P. H. M. Bovee-Geurts, J. van Oostrurn, F. Milletti, T. Enderle, R. Brock, Angew. Chem. Int. Edit. 2015, 54, 15105.
- 70N. J. Lin, W. Y. Zheng, L. F. Li, H. Liu, T. W. Wang, P. Wang, X. Y. Ma, Targeted Oncol. 2014, 9, 163.
- 71K. Montrose, Y. Yang, G. W. Krissansen, Sci. Rep. 2014, 4, 4900.
- 72P. Kumar, H. Wu, J. L. McBride, K. E. Jung, M. H. Kim, B. L. Davidson, S. K. Lee, P. Shankar, N. Manjunath, Nature 2007, 448, 39.
- 73S. Zeller, C. S. Choi, P. D. Uchil, H. S. Ban, A. Siefert, T. M. Fahmy, W. Mothes, S. K. Lee, P. Kumar, Chem. Biol. 2015, 22, 50.
- 74K. Han, S. Chen, W. H. Chen, Q. Lei, Y. Liu, R. X. Zhuo, X. Z. Zhang, Biomaterials 2013, 34, 4680.
- 75A. Kichler, C. Leborgne, J. Marz, O. Danos, B. Bechinger, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 156 4.
- 76J. Wolf, C. Aisenbrey, N. Harmouche, J. Raya, P. Bertani, N. Voievoda, R. Suss, B. Bechinger, Biophys. J. 2017, 113, 1290.
- 77G. Moulay, C. Leborgne, A. J. Mason, C. Aisenbrey, A. Kichler, B. Bechinger, J. Pept. Sci. 2017, 23, 320.
- 78H. Sato, J. B. Feix, Biochim. Biophys. Acta 2006, 1758, 1245.
- 79K. L. Piers, R. E. Hancock, Mol. Microbiol. 1994, 12, 951.
- 80S. Ramachandran, S. Krishnamurthy, A. M. Jacobi, C. Wohlford-Lenane, M. A. Behlke, B. L. Davidson, P. B. McCray Jr., Am. J. Physiol.: Lung Cell. Mol. Physiol. 2013, 305, 23.
- 81J. J. Cronican, D. B. Thompson, K. T. Beier, B. R. McNaughton, C. L. Cepko, D. R. Liu, ACS Chem. Biol. 2010, 5, 747.
- 82D. B. Thompson, R. Villasenor, B. M. Dorr, M. Zerial, D. R. Liu, Chem. Biol. 2012, 19, 813.
10.1016/j.chembiol.2012.06.014 Google Scholar
- 83L. Yan, M. E. Adams, J. Biol. Chem. 1998, 273, 2059.
- 84Y. J. Lee, G. Johnson, G. C. Peltier, J. P. Pellois, Biochim. Biophys. Acta 2011, 1810, 752.
- 85P. G. Dougherty, A. Sahni, D. Pei, Chem. Rev. 2019, 119, 10241.
- 86A. Erazo-Oliveras, K. Najjar, L. Dayani, T. Y. Wang, G. A. Johnson, J. P. Pellois, Nat. Methods 2014, 11, 861.
- 87S. T. Henriques, H. Peacock, A. H. Benfield, C. K. Wang, D. J. Craik, J. Am. Chem. Soc. 2019, 141, 20460.
- 88A. Erazo-Oliveras, K. Najjar, D. Truong, T. Y. Wang, D. J. Brock, A. R. Prater, J. P. Pellois, Cell Chem. Biol. 2016, 23, 598.
- 89J. K. Allen, D. J. Brock, H. M. Kondow-McConaghy, J. P. Pellois, Biomolecules 2018, 8, 50.
- 90D. J. Brock, L. Kustigian, M. Jiang, K. Graham, T. Y. Wang, A. Erazo-Oliveras, K. Najjar, J. Zhang, H. Rye, J. P. Pellois, Traffic 2018, 19, 421.
- 91Y. J. Lee, G. Johnson, J. P. Pellois, Biochemistry 2010, 49, 7854.
- 92D. Mandal, A. N. Shirazi, K. Parang, Angew. Chem. Int. Edit. 2011, 50, 9633.