Input-to-state stability of a time-invariant system with control delay and additive disturbances
Abstract
We consider a class of linear time invariant systems with control delay and additive disturbances. A state predictive feedback method is first applied to compensate the actuator delay. In this way, a closed loop system free of delay is achieved. It allows to ensure input-to-state-stability of the closed loop system. Applications are given for the lateral-directional stability of an airplane with two controls, on the aileron and on the rudder, in correlation with compliance with some regulatory flight conditions.