Synthesis of control Lyapunov functions and stabilizing feedback strategies using exit-time optimal control Part I: Theory
Corresponding Author
Ivan Yegorov
Department of Mathematics, North Dakota State University, Fargo, North Dakota, USA
Correspondence
Ivan Yegorov (also known as Egorov), Department of Mathematics, North Dakota State University, Fargo, North Dakota, USA.
Email: [email protected]
Search for more papers by this authorPeter M. Dower
Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorLars Grüne
Chair of Applied Mathematics, University of Bayreuth, Bayreuth, Germany
Search for more papers by this authorCorresponding Author
Ivan Yegorov
Department of Mathematics, North Dakota State University, Fargo, North Dakota, USA
Correspondence
Ivan Yegorov (also known as Egorov), Department of Mathematics, North Dakota State University, Fargo, North Dakota, USA.
Email: [email protected]
Search for more papers by this authorPeter M. Dower
Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorLars Grüne
Chair of Applied Mathematics, University of Bayreuth, Bayreuth, Germany
Search for more papers by this authorFunding information: AFOSR/AOARD, FA2386-16-1-4066
Abstract
This work studies the problem of constructing control Lyapunov functions (CLFs) and feedback stabilization strategies for deterministic nonlinear control systems described by ordinary differential equations. Many numerical methods for solving the Hamilton–Jacobi–Bellman partial differential equations specifying CLFs typically require dense state space discretizations and consequently suffer from the curse of dimensionality. A relevant direction of attenuating the curse of dimensionality concerns reducing the computation of the values of CLFs and associated feedbacks at any selected states to finite-dimensional nonlinear programming problems. We propose to use exit-time optimal control for that purpose. This article is the first part of a two-part work. First, we state an exit-time optimal control problem with respect to a sublevel set of an appropriate local CLF and establish that, under a number of reasonable conditions, the concatenation of the corresponding value function and the local CLF is a global CLF in the whole domain of asymptotic null-controllability. We also investigate the formulated optimal control problem. A modification of these constructions for the case when one does not find a suitable local CLF is provided as well. Our developments serve as a theoretical basis for a curse-of-dimensionality-free approach to feedback stabilization, that is presented in the second part Yegorov et al. (2021) of this work together with supporting numerical simulation results.
REFERENCES
- 1Isidori A. Nonlinear Control Systems. London, UK: Springer-Verlag; 1995.
10.1007/978-1-84628-615-5 Google Scholar
- 2Sepulchre R, Jankovic M, Kokotovic PV. Constructive Nonlinear Control. London, UK: Springer-Verlag; 1997.
10.1007/978-1-4471-0967-9 Google Scholar
- 3Nikitin S. Global Controllability and Stabilization of Nonlinear Systems. Series on Advances in Mathematics for Applied Sciences. Vol 20. Singapore, Asia: World Scientific Publishing; 1994.
- 4Camilli F, Grüne L, Wirth F. Control Lyapunov functions and Zubov's method. SIAM J Control Optim. 2008; 47(1): 301-326.
- 5Giesl P, Hafstein S. Review on computational methods for Lyapunov functions. Discr Contin Dyn Syst Ser B. 2015; 20(8): 2291-2331.
- 6Afanas'ev VN, Kolmanovskii VB, Nosov VR. Math Theory Control Syst Des. Dordrecht, Netherlands: Kluwer; 1996.
10.1007/978-94-017-2203-2 Google Scholar
- 7Fantoni I, Lozano R. Non-linear Control for Underactuated Mechanical Systems. London, UK: Springer-Verlag; 2002.
10.1007/978-1-4471-0177-2 Google Scholar
- 8Malisoff M, Mazenc F. Constructions of Strict Lyapunov Functions. London, UK: Springer-Verlag; 2009.
- 9Choukchou-Braham A, Cherki B, Djemaï M, Busawon K. Analysis and Control of Underactuated Mechanical Systems. Switzerland: Springer International Publishing; 2014.
10.1007/978-3-319-02636-7_2 Google Scholar
- 10Zubov VI. Methods of A. M. Lyapunov and Their Application. Groningen: P. Noordhoff; 1964.
- 11Grüne L, Zidani H. Zubov's equation for state-constrained perturbed nonlinear systems. Math Control Related Fields. 2015; 5(1): 55-71.
- 12Bardi M, Capuzzo-Dolcetta I. Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Boston, MA: Birkhauser; 2008.
- 13Falcone M, Ferretti R. Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J Numer Anal. 1998; 35(3): 909-940.
- 14Falcone M. Numerical methods for differential games based on partial differential equations. Int Game Theory Rev. 2006; 8: 231-272.
10.1142/S0219198906000886 Google Scholar
- 15Cristiani E, Falcone M. Fast semi-Lagrangian schemes for the Eikonal equation and applications. SIAM J Numer Anal. 2007; 45: 1979-2011.
- 16Bokanowski O, Desilles A, Zidani H, Zhao J. User's guide for the ROC-HJ solver: reachability, optimal control, and Hamilton–Jacobi equations; May 10, 2017. Version 2.3. http://uma.ensta-paristech.fr/soft/ROC-HJ/
- 17Fleming WH, Soner HM. Controlled Markov Processes and Viscosity Solutions. New York, NY: Springer-Verlag; 2006.
- 18Crandall MG, Lions P-L. Two approximations of solutions of Hamilton–Jacobi equations. Math Comput. 1984; 43: 1-19.
- 19Osher S, Shu C-W. High order essentially non-oscillatory schemes for Hamilton–Jacobi equations. SIAM J Numer Anal. 1991; 28(4): 907-922.
- 20Jiang G, Peng DP. Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J Sci Comput. 2000; 21(6): 2126-2143.
- 21Zhang Y-T, Shu C-W. High-order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J Sci Comput. 2003; 24(3): 1005-1030.
- 22Bokanowski O, Forcadel N, Zidani H. Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J Control Optim. 2010; 48: 4292-4316.
- 23Bokanowski O, Cristiani E, Zidani H. An efficient data structure and accurate scheme to solve front propagation problems. J Sci Comput. 2010; 42(2): 251-273.
- 24Jensen M, Smears I. On the convergence of finite element methods for Hamilton–Jacobi–Bellman equations. SIAM J Numer Anal. 2013; 51(1): 137-162.
- 25Osher S, Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys. 1988; 79: 12-49.
- 26Osher S. A level set formulation for the solution of the Dirichlet problem for Hamilton–Jacobi equations. SIAM J Math Anal. 1993; 24(5): 1145-1152.
- 27Sethian J. Level Set Methods and Fast Marching Methods. New York, NY: Cambridge University Press; 1999.
- 28Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York, NY: Springer-Verlag; 2003.
10.1007/b98879 Google Scholar
- 29Mitchell I, Bayen A, Tomlin C. A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans Automat Contr. 2005; 50(7): 947-957.
- 30Mitchell, I. A Toolbox of Level Set Methods. Department of Computer Science, University of British Columbia. 2012. http://www.cs.ubc.ca/$/sim$mitchell/ToolboxLS.
- 31Bellman R. Dynamic Programming. Princeton, NJ: Princeton University Press; 1957.
- 32Bellman R. Adaptive Control Processes: A Guided Tour. Princeton, NJ: Princeton University Press; 1961.
10.1515/9781400874668 Google Scholar
- 33Yegorov I, Dower P. Perspectives on characteristics based curse-of-dimensionality-free numerical approaches for solving Hamilton–Jacobi equations. Appl Math Optim. 2021; 83: 1–49. https://doi.org/10.1007/s00245-018-9509-6.
- 34McEneaney WM. A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J Control Optim. 2007; 46(4): 1239-1276.
- 35Kang W, Wilcox LC. Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations. Comput Optim Appl. 2017; 68(2): 289-315.
- 36Darbon J, Osher S. Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere. Res Math Sci. 2016; 3: 19.
- 37Chow YT, Darbon J, Osher S, Yin W. Algorithm for overcoming the curse of dimensionality for state-dependent Hamilton–Jacobi equations. J Comput Phys. 2019; 387(15): 376-409.
- 38Chow YT, Darbon J, Osher S, Yin W. Algorithm for overcoming the curse of dimensionality for time-dependent non-convex Hamilton–Jacobi equations arising from optimal control and differential games problems. J Sci Comput. 2017; 73(2–3): 617-643.
- 39Pontryagin LS, Boltyansky VG, Gamkrelidze RV, Mishchenko EF. The Mathematical Theory of Optimal Processes. New York, NY: Macmillan; 1964.
- 40Cesari L. Optimization — Theory and Applications, Problems with Ordinary Differential Equations. Applications of Mathematics. Vol 17. New York, NY: Springer-Verlag; 1983.
- 41Geering HP. Optimal Control with Engineering Applications. Berlin/Heidelberg, Germany: Springer-Verlag; 2007.
- 42Patterson MA, Rao AV. GPOPS–II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans Math Softw. 2014; 41(1): 1:1-1:37.
- 43Patterson MA, Rao AV. GPOPS–II user's guide; 2016. http://www.gpops2.com.
- 44Nie, Y., Faqir, O., and Kerrigan, E. ICLOCS2 Optimal Control Software. London, UK: Imperial College London, 2018. http://www.ee.ic.ac.uk/ICLOCS/.
- 45Becerra VM. Solving complex optimal control problems at no cost with PSOPT. Paper presented at: Proceedings of the IEEE Multi-Conference on Systems and Control, Yokohama, Japan; 2010:1391-1396.
- 46Becerra VM. PSOPT optimal control solver user manual; 2011. http://www.psopt.org.
- 47Bonnans F, Martinon P, Giorgi D, et al. BOCOP 2.1.0 — user guide; October 30, 2017. http://www.bocop.org.
- 48Houska B, Ferreau HJ, Diehl M. ACADO toolkit — an open source framework for automatic control and dynamic optimization. Opt Control Appl Methods. 2011; 32(3): 298-312.
- 49Houska B, Ferreau HJ, Vukov M, Quirynen R. ACADO toolkit user's manual; 2014. http://acado.github.io.
- 50Benson DA, Huntington GT, Thorvaldsen TP, Rao AV. Direct trajectory optimization and costate estimation via an orthogonal collocation method. J Guid Control Dyn. 2006; 29(6): 1435-1440.
- 51Garg D, Patterson MA, Francolin C, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput Optim Appl. 2011; 49(2): 335-358.
- 52Michalska H, Mayne DQ. Robust receding horizon control of constrained nonlinear systems. IEEE Trans Automat Contr. 1993; 38(11): 1623-1633.
- 53Chen H, Allgöwer F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica. 1998; 34(10): 1205-1217.
- 54Fontes FACC. A general framework to design stabilizing nonlinear model predictive controllers. Syst Control Lett. 2001; 42(2): 127-143.
- 55Jadbabaie A, Hauser J. On the stability of receding horizon control with a general terminal cost. IEEE Trans Automat Contr. 2005; 50(5): 674-678.
- 56Yegorov I, Dower PM, Grüne L. A characteristics based curse-of-dimensionality-free approach for approximating control Lyapunov functions and feedback stabilization. Paper presented at: Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS 2018), Hong Kong; 2018. http://mtns2018.ust.hk/media/files/0137.pdf.
- 57Yegorov I, Dower PM, Grüne L. Global extension of local control Lyapunov functions via exit-time optimal control. Paper presented at: Proceedings of the 57th IEEE Conference on Decision and Control (CDC 2018), Miami Beach, FL; 2018. https://doi.org/10.1109/CDC.2018.8619413
- 58Yegorov I, Dower PM, Grüne L. Synthesis of control Lyapunov functions and stabilizing feedback strategies using exit-time optimal control. Part II: numerical approach. Opt Control Appl Methods. 2021. https://doi.org/10.1002/oca.2733.
- 59Clarke FH, Ledyaev Yu S, Stern RJ, Wolenski PR. Nonsmooth Analysis and Control Theory. New York, NY: Springer-Verlag; 1998.
- 60Filippov A, Differential F. Equations with Discontinuous Right-hand Sides. Dordrecht, Netherlands: Kluwer Academic; 1988.
10.1007/978-94-015-7793-9 Google Scholar
- 61Angeli D, Sontag ED. Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett. 1999; 38: 209-217.
- 62Blagodatskikh VI, Filippov AF. Differential inclusions and optimal control. Proc Steklov Inst Math. 1986; 169: 199-259.
- 63Clarke FH, Ledyaev YS, Rifford L, Stern RJ. Feedback stabilization and Lyapunov functions. SIAM J Control Optim. 2000; 39(1): 25-48.
- 64Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR. Qualitative properties of trajectories of control systems: a survey. J Dyn Control Syst. 1995; 1(1): 1-48.
10.1007/BF02254655 Google Scholar
- 65Markley NG. Principles of Differential Equations. Hoboken, NJ: John Wiley & Sons; 2004.
10.1002/9781118033289 Google Scholar
- 66Cannarsa P, Sinestrari C. Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Boston, MA: Birkhäuser; 2004.
10.1007/b138356 Google Scholar
- 67Schirotzek W. Nonsmooth Analysis. Berlin/Heidelberg, Germany: Springer-Verlag; 2007.
10.1007/978-3-540-71333-3 Google Scholar
- 68Krantz SG, Parks HR. The Geometry of Domains in Space. Boston, MA: Birkhäuser; 1999.
10.1007/978-1-4612-1574-5 Google Scholar
- 69Grüne L. Mathematische Kontrolltheorie, lecture notes. 2020. https://num.math.uni-bayreuth.de/de/team/lars-gruene/skripten/kontrolltheorie/kt_2021_de.pdf
- 70Aguilar-Ibañez C, Gutiérrez Frias O, Suárez Castañón MS. Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dyn. 2005; 40(4): 367-374.
- 71Aguilar-Ibañez C, Martínez-García JC, Soria-López A, de Jesús Rubio J. On the stabilization of the inverted-cart pendulum using the saturation function approach. Math Probl Eng. 2011;856015. https://doi.org/10.1155/2011/856015.
- 72Aguilar-Ibañez C, Suárez Castañón MS, de Jesús Rubio J. Stabilization of the ball on the beam system by means of the inverse Lyapunov approach. Math Probl Eng. 2012;810597. https://doi.org/10.1155/2012/810597.
- 73Sontag ED. Mathematical Control Theory: Deterministic Finite Dimensional Systems. New York, NY: Springer; 1998.
10.1007/978-1-4612-0577-7 Google Scholar
- 74Sontag ED. Comments on integral variants of ISS. Syst Control Lett. 1998; 34(1): 93-100.
- 75Soravia P. Optimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness. Adv Differ Equat. 1999; 4(2): 275-296.
- 76Laurent L, Le Riche R, Soulier B, Boucard PA. An overview of gradient-enhanced metamodels with applications. Arch Comput Methods Eng. 2019; 26: 61-106.
- 77de Baar JHS, Dwight RP, Bijl H. Improvements to gradient-enhanced kriging using a Bayesian interpretation. Int J Uncertain Quantif. 2014; 4(3): 205-223.
- 78Chilan CM, Conway BA. Optimal nonlinear control using Hamilton–Jacobi–Bellman viscosity solutions on unstructured grids. J Guid Control Dyn. 2020; 43(1): 30-38.
- 79Nakamura---Zimmerer T, Gong Q, Kang W. Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. arXiv: 1907.05317.
- 80Darbon J, Langlois GP, Meng T. Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures. Research in the Mathematical Sciences. 2020; 7: 20.
- 81Azmi, B., Kalise, D., and Kunisch, K. Data-driven recovery of optimal feedback laws through optimality conditions and sparse polynomial regression; 2007. arXiv: 2007.09753.
- 82Demyanov VF, Rubinov AM. Constructive Nonsmooth Analysis. Approximation & Optimization. Vol 7. Frankfurt, Germany: Peter Lang Pub Incorporated; 1995.