H∞ deconvolution filter for two-dimensional numerical systems using orthogonal moments
Corresponding Author
Bensalem Boukili
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Correspondence
Bensalem Boukili, Faculty of Science Dhar El Mehraz, B.P. 1796 Fez-Atlas Morocco.
Email: [email protected]
Search for more papers by this authorMostafa El Mallahi
LIPI Laboratory, High Normal School, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Search for more papers by this authorAbderrahim El-Amrani
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorAbdelaziz Hmamed
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorIsmail Boumhidi
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorCorresponding Author
Bensalem Boukili
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Correspondence
Bensalem Boukili, Faculty of Science Dhar El Mehraz, B.P. 1796 Fez-Atlas Morocco.
Email: [email protected]
Search for more papers by this authorMostafa El Mallahi
LIPI Laboratory, High Normal School, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Search for more papers by this authorAbderrahim El-Amrani
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorAbdelaziz Hmamed
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorIsmail Boumhidi
LISAC Laboratory, Faculty of Science Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez-Atlas, Morocco
Search for more papers by this authorAbstract
In this article, we propose the issue of H∞ deconvolution filtering for two-dimensional (2D) systems described by the Fornasini–Marchesini local state-space model. The main challenge is the design of a deconvolution filter to rebuild the 2D signal so that the filter error system is asymptotically stable and preserves a guaranteed H∞ performance. To overcome this issue, we use some free matrix variables to eliminate coupling between Lyapunov matrix and system matrices to obtain sufficient conditions in linear matrix inequality form to ensure the desired stability and performance of the error systems in the first time. Moreover, we use the orthogonal moments to extract the feature vectors to generate the input system, with the minimum information with and without noise. Simulation examples are provided to show that the new design technology proposed in this article achieves better H∞ performance than the existing design methods. Finally, this work can be very helpful tools for the practitioners in telecommunication, and data scientists to aid them in deconvolution, diagnostic, and transmission.
Open Research
DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues datasets with DOIs
REFERENCES
- 1Benzaouia A., Hmamed A., Tadeo F., “ Two-Dimensional Systems. From Introduction to State of the Art”, Springer International Publishing Switzerland: https://doi.org/10.1007/978-3-319-20116-0, 2016.
10.1007/978-3-319-20116-0 Google Scholar
- 2Boukili B, Hmamed A, Tadeo F. Reduced-order H∞ filtering with intermittent measurements for a class of 2D systems. J Control Autom Electr Syst. 2016; 27(6): 597–607. https://doi.org/10.1007/s40313-016-0271-1.
- 3Kaczorek T. Two-dimensional Linear Systems. Berlin, UK: Springer-Verlag; 1985.
- 4Fornasini E, Marchesini G. State-space realization theory of two-dimensional filters. IEEE Trans Autom Control. 1976; 21(4): 484-492.
- 5Roesser R. A discrete state-space model for linear image processing. IEEE Trans Automat Contr. 1975; 20: 1-10.
- 6Boukili B, Hmamed A, Tadeo F. Robust H∞ filtering for 2-D discrete Roesser systems. J Control Autom Electr Syst. 2016; 27(5): 497–505. https://doi.org/10.1007/s40313-016-0251-5.
- 7Du C, Xie L, Soh YC. H∞ filtering of 2-D discrete systems. IEEE Trans Signal Process. 2000; 48(6): 1760-1768.
- 8Souza CE, Xie L, Coutinho DF. Robust filtering for 2-D discrete-time linear systems with convex-bounded parameter uncertainty. Automatica. 2010; 46: 673-681.
- 9Xu S, Lam J, Zou Y, Lin Z, Paszke W. Robust H∞ filtering for uncertain 2-D continuous systems. IEEE Trans Signal Process. 2005; 53(5): 1731-1738.
- 10Kririm S, Hmamed A, Tadeo F. Robust H∞ filtering for uncertain 2D singular Roesser models. Circuits Syst Signal Process. 1007/s00034-015-9967-x, 2015; 34(7): 2213-2235.
- 11Chen SF, Fong IK. Robust H∞ filtering for 2-D state-delayed systems with NFT uncertainties. IEEE Trans Signal Process. 2006; 54(1): 274-285.
- 12El-kasri C, Hmamed A, Tissir E, Tadeo T. Robust H∞ filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidim Syst Signal Process. 2013; 24(4): 685–706. https://doi.org/10.1007/s11045-013-0242-7.
- 13El-Amrani A, Boukili B, Hmamed A, El Hajjaji A, Boumhidi I. Robust H∞ filtering for 2D continuous systems with finite frequency specifications. Int J Syst Sci. 2018; 49(1): 43–57. https://doi.org/10.1080/00207721.2017.1391960.
- 14Ding DW, Du X, Li X. Finite-frequency model reduction of two-dimensional digital filters. IEEE Trans Automat Control. 2015; 60(6): 1624-1629.
- 15Gao H, Lam J, Wang C, Xu S. H∞ model reduction for uncertain two-dimensional discrete systems. Optim Control Appl Meth. 2005; 26: 199-227.
- 16Boukili B, Hmamed A, Benzaouia A, El Hajjaji A. H∞ filtering of two-dimensional T-S fuzzy systems. Circuits Syst Signal Process. 2014; 33(6): 1737–1761. https://doi.org/10.1007/s00034-013-9720-2.
- 17Cui J.R., Hu G.D. “State estimation of 2-D stochastic systems represented by FM-II model”, Acta Automat Sin, Vol. 36(5), Pp. 755-761, https://doi.org/10.1016/S1874-1029(09)60034-3, 2010.
10.3724/SP.J.1004.2010.00755 Google Scholar
- 18Wu L, Shi P, Gao H, Wang C. H∞ filtering for 2D Markovian jump systems. Automatica. 2008; 44(7): 1849-1858.
- 19Luo Y, Wang Z, Wei G, Alsaadi FE. H∞ fuzzy fault detection for uncertain 2-D systems under round-robin scheduling protocol. Signal Process. 2017; 47(8): 2172-2184. https://doi.org/10.1109/TSMC.2016.2632043.
- 20Luo Y, Wang Z, Wei G. Fault detection for fuzzy systems with multiplicative noises under periodic communication protocols. Signal Process. 2018; 26(4): 2384-2395. https://doi.org/10.1109/TFUZZ.2017.2774193.
- 21Luo Y, Wang Z, Wei G, Alsaadi FE. Nonfragile l2 – H∞ fault estimation for Markovian jump 2-D systems with specified power bounds. Signal Process. 2018; 50(8): 1964-1975. https://doi.org/10.1109/TSMC.2018.2794414.
- 22Amakdouf H, Zouhri A, El Mallahi M, et al. Artificial intelligent classification of biomedical color image using quaternion discrete radial Tchebichef moments. Multimed Tools Appl. 2021; 80: 3173-3192. https://doi.org/10.1007/s11042-020-09781-x.
- 23Amakdouf H, Zouhri A, Mallahi EL. Color image analysis of quaternion discrete radial Krawtchouk moments. Multimed Tools Appl. 2020; 79: 26571-26586. https://doi.org/10.1007/s11042-020-09120-0.
- 24El Mallahi M, Zouhri A, Qjidaa H. Radial meixner moment invariants for 2D and 3D image recognition. Pattern Recognit Image Anal. 2018; 28: 207-216. https://doi.org/10.1134/S1054661818020128.
10.1134/S1054661818020128 Google Scholar
- 25El Mallahi M, Zouhri A, Amakdouf H, Qjidaa H. Rotation scaling and translation invariants of 3D radial shifted Legendre moments. Int J Automat Comput. 2018; 15(2): 169-180.
- 26Amakdouf H, El Mallahi M, Zouhri A, Qjidaa H. Classification and recognition of 3D image of Charlier moments using a multilayer perceptron architecture. Proc Comput Sci. 2018; 127: 226-235.
10.1016/j.procs.2018.01.118 Google Scholar
- 27El Mallahi M, Zouhri A, Mesbah A, El Affar I, Qjidaa H. Radial invariant of 2D and 3D Racah moments. Multimed Tools Appl Int J. 2018; 77(6): 6583-6604.
- 28El Mallahi M, Mesbah A, Qjidaa H. 3D radial invariant of dual Hahn moments. Neural Comput Appl. 2018; 30(7): 2283-2222.
- 29Mesbah A, Zouhri A, El Mallahi M, Qjidaa H. Robust reconstruction and generalized dual Hahn moments invariants extraction for 3D images. 3D Research. 2017; 8(1): 7.
10.1007/s13319-016-0113-8 Google Scholar
- 30El Mallahi M. Three dimensional radial Tchebichef moment invariants for volumetric image recognition. Pattern Recognit Image Anal. 2017; 27(4): 810–824. https://doi.org/10.1134/S1054661817040113.
10.1134/S1054661817040113 Google Scholar
- 31Xiao B, Ma JF, Cui JT. Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent. 2012; 23(2): 381-386. https://doi.org/10.1016/j.jvcir.2011.11.008.
- 32Xiao B, Zhang Y, Li L, Li W, Wang G. Explicit Krawtchouk moment invariants for invariant image recognition. J Electron Imaging. 2016; 25(2):023002. https://doi.org/10.1117/1.JEI.25.2.
- 33El Mallahi M, Zouhri A, El Mekkaoui J, Qjidaa H. Three dimensional radial Krawtchouk moment invariants for volumetric image recognition. Pattern Recognit Image Anal. 2017; 27(4): 810-824.
10.1134/S1054661817040113 Google Scholar
- 34Xie L, Du C, Zhang C, Soh YC. H∞ deconvolution filtering of 2-D digital systems. IEEE Trans Signal Process. 2002; 50(9): 2319-2332.
- 35Wei G, Wang Z, Shu H, Fang G. H∞ deconvolution filter for stochastic systems with interval uncertanties. Circuits Syst Signal Process. 2007; 26(4): 495-512. https://doi.org/10.1007/s00034-007-4004-x.
- 36Zhang B, Lam J, Xu S. Deconvolution filtering for stochastic systems via homogeneous polynomial Lyapunov function. Signal Process. 2009; 89: 605-614.
- 37Zouhri A, Boumhidi I. Stability analysis of interconnected complex nonlinear systems using the Lyapunov and Finsler property. Multimed Tools Appl. 2021. https://doi.org/10.1007/s11042-020-10449-9.
- 38Lacerda MJ, Oliveira RCLF, Peres PLD. Robust H2 and H∞ filter design for uncertain linear systems via LMIs and polynomial matrices. Signal Process. 2011; 91: 1115-1122.
- 39Gao H, Meng X, Chen T. New design to robust H∞ filters for 2-D systems. IEEE Signal Process Lett. 2008; 15: 217-220.
- 40Fornasini E, Marchesini G. Finite memory realization of 2D FIR filters. IEEE Int Symp Circuits Syst. 1992; 3: 1444-1447.