Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype
Nathalie Koulmann MD, PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Ecole du Val-de-Grâce, Paris, France
Search for more papers by this authorHélène Richard-Bulteau PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorBrigitte Crassous PharmD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorBernard Serrurier PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorMarielle Pasdeloup MSc
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorXavier Bigard MD, PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Ecole du Val-de-Grâce, Paris, France
Search for more papers by this authorCorresponding Author
Sébastien Banzet MD, PhD
Ecole du Val-de-Grâce, Paris, France
Institut de Recherche Biomédicale des Armées, Département Soutien Médico-Chirurgical des Forces, 1 rue du lieutenant Raoul Batany, 92140 Clamart, France
INSERM U1197, Clamart, France
Correspondence to: S. Banzet; e-mail: [email protected]Search for more papers by this authorNathalie Koulmann MD, PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Ecole du Val-de-Grâce, Paris, France
Search for more papers by this authorHélène Richard-Bulteau PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorBrigitte Crassous PharmD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorBernard Serrurier PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorMarielle Pasdeloup MSc
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Search for more papers by this authorXavier Bigard MD, PhD
Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
Ecole du Val-de-Grâce, Paris, France
Search for more papers by this authorCorresponding Author
Sébastien Banzet MD, PhD
Ecole du Val-de-Grâce, Paris, France
Institut de Recherche Biomédicale des Armées, Département Soutien Médico-Chirurgical des Forces, 1 rue du lieutenant Raoul Batany, 92140 Clamart, France
INSERM U1197, Clamart, France
Correspondence to: S. Banzet; e-mail: [email protected]Search for more papers by this authorABSTRACT
Introduction: As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. Methods: After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. Results: The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. Conclusions: Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91–100, 2017
REFERENCES
- 1 Allbrook D. Skeletal muscle regeneration. Muscle Nerve 1981; 4: 234–245.
- 2 Harris JB, Johnson MA, Karlsson E. Proceedings: histological and histochemical aspects of the effect of notexin on rat skeletal muscle. Br J Pharmacol 1974; 52: 152P.
- 3 Crassous B, Richard-Bulteau H, Deldicque L, Serrurier B, Pasdeloup M, Francaux M, et al. Lack of effects of creatine on the regeneration of soleus muscle after injury in rats. Med Sci Sports Exerc 2009; 41: 1761–1769.
- 4 Fink E, Fortin D, Serrurier B, Ventura-Clapier R, Bigard AX. Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury. J Muscle Res Cell Motil 2003; 24: 421–429.
- 5 Richard-Bulteau H, Serrurier B, Crassous B, Banzet S, Peinnequin A, Bigard X, et al. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol 2008; 294: C467–C476.
- 6 d'Albis A, Couteaux R, Mira JC, Janmot C, Roulet A. [Myosin isoforms synthesized during regeneration of fast contraction skeletal muscle regeneration, in the presence of motor nerve and after denervation. Study in adult rats and mice]. Reprod Nutr Dev 1988; 28(3B): 753–756.
- 7 Whalen RG, Harris JB, Butler-Browne GS, Sesodia S. Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 1990; 141: 24–40.
- 8 Smith D, Green H, Thomson J, Sharratt M. Oxidative potential in developing rat diaphragm, EDL, and soleus muscle fibers. Am J Physiol 1988; 254(Pt 1): C661–C668.
- 9 Herzberg NH, Zwart R, Wolterman RA, Ruiter JP, Wanders RJ, Bolhuis PA, et al. Differentiation and proliferation of respiration-deficient human myoblasts. Biochim Biophys Acta 1993; 1181: 63–67.
- 10 Leary SC, Battersby BJ, Hansford RG, Moyes CD. Interactions between bioenergetics and mitochondrial biogenesis. Biochim Biophys Acta 1998; 1365: 522–530.
- 11 Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, et al. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 2000; 275: 2733–2744.
- 12 Duguez S, Feasson L, Denis C, Freyssenet D. Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab 2002; 282: E802–E809.
- 13 Bassel-Duby R, Olson EN. Role of calcineurin in striated muscle: development, adaptation, and disease. Biochem Biophys Res Commun 2003; 311: 1133–1141.
- 14 Schiaffino S, Serrano A. Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 2002; 23: 569–575.
- 15 Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, et al. Calcineurin Co-regulates contractile and metabolic components of slow muscle phenotype. J Biol Chem 2000; 275: 19653–19660.
- 16 Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998; 12: 2499–2509.
- 17 Koulmann N, Bahi L, Ribera F, Sanchez H, Serrurier B, Chapot R, et al. Thyroid hormone is required for the phenotype transitions induced by the pharmacological inhibition of calcineurin in adult soleus muscle of rats. Am J Physiol Endocrinol Metab 2008; 294: E69–E77.
- 18 Koulmann N, Sanchez H, N'Guessan B, Chapot R, Serrurier B, Peinnequin A, et al. The responsiveness of regenerated soleus muscle to pharmacological calcineurin inhibition. J Cell Physiol 2006; 208: 116–122.
- 19 Sakuma K, Nishikawa J, Nakao R, Watanabe K, Totsuka T, Nakano H, et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol 2003; 105: 271–280.
- 20 Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010; 2010: 721219.
- 21 Irintchev A, Zweyer M, Cooper RN, Butler-Browne GS, Wernig A. Contractile properties, structure and fiber phenotype of intact and regenerating slow-twitch muscles of mice treated with cyclosporin A. Cell Tissue Res 2002; 308: 143–156.
- 22 Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, et al. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 2001; 98: 13108–13113.
- 23 Freyssenet D, Berthon P, Denis C. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises. Arch Physiol Biochem 1996; 104: 129–141.
- 24 Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 2009; 34: 465–472.
- 25 Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 2006; 452: 125–139.
- 26 Talmadge RJ, Roy RR. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol (1985) 1993; 75: 2337–2340.
- 27 Agbulut O, Li Z, Mouly V, Butler-Browne GS. Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain isoforms. Biol Cell 1996; 88: 131–135.
- 28 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.
- 29 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.
- 30 Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, et al. Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res 2000; 87: E61–E68.
- 31 Booth FW, Laye MJ, Spangenburg EE. Gold standards for scientists who are conducting animal-based exercise studies. J Appl Physiol (1985) 2010; 108: 219–221.
- 32 Abbott KL, Friday BB, Thaloor D, Murphy TJ, Pavlath GK. Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 1998; 9: 2905–2916.
- 33 Fenyvesi R, Racz G, Wuytack F, Zador E. The calcineurin activity and MCIP1.4 mRNA levels are increased by innervation in regenerating soleus muscle. Biochem Biophys Res Commun 2004; 320: 599–605.
- 34 Launay T, Noirez P, Butler-Browne G, Agbulut O. Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1508–R1514.
- 35 Meissner JD, Freund R, Krone D, Umeda PK, Chang KC, Gros G, et al. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/beta gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Res 2011; 39: 5907–5925.
- 36 Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2000; 2: 142–147.
- 37 Wretman C, Lionikas A, Widegren U, Lannergren J, Westerblad H, Henriksson J. Effects of concentric and eccentric contractions on phosphorylation of MAPK(erk1/2) and MAPK(p38) in isolated rat skeletal muscle. J Physiol 2001; 535(Pt 1): 155–164.
- 38 Sesodia S, Choksi RM, Nemeth PM. Nerve-dependent recovery of metabolic pathways in regenerating soleus muscles. J Muscle Res Cell Motil 1994; 15: 573–581.
- 39 Hamai N, Nakamura M, Asano A. Inhibition of mitochondrial protein synthesis impaired C2C12 myoblast differentiation. Cell Struct Funct 1997; 22: 421–431.
- 40 Korohoda W, Pietrzkowski Z, Reiss K. Chloramphenicol, an inhibitor of mitochondrial protein synthesis, inhibits myoblast fusion and myotube differentiation. Folia Histochem Cytobiol 1993; 31: 9–13.
- 41 Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 2002; 1576: 1–14.
- 42 Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 2006; 291: E807–E816.