Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom
Cristian Montalba
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorJesus Urbina
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorJulio Sotelo
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorMarcelo E. Andia
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorCristian Tejos
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorPablo Irarrazaval
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorDaniel E. Hurtado
Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorIsrael Valverde
Hospital Virgen del Rocio, Universidad de Sevilla, Seville, Spain
Institute of Biomedicine of Seville, Universidad de Sevilla, Seville, Spain
Search for more papers by this authorCorresponding Author
Sergio Uribe
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence to: Sergio Uribe, Ph.D., Department of Radiology, School of Medicine and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile. E-mail: [email protected].Search for more papers by this authorCristian Montalba
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorJesus Urbina
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorJulio Sotelo
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorMarcelo E. Andia
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorCristian Tejos
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorPablo Irarrazaval
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorDaniel E. Hurtado
Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorIsrael Valverde
Hospital Virgen del Rocio, Universidad de Sevilla, Seville, Spain
Institute of Biomedicine of Seville, Universidad de Sevilla, Seville, Spain
Search for more papers by this authorCorresponding Author
Sergio Uribe
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
Correspondence to: Sergio Uribe, Ph.D., Department of Radiology, School of Medicine and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago, Chile. E-mail: [email protected].Search for more papers by this authorThis research was conducted with the support of CONICYT - PIA - Anillo ACT1416, CONICYT FONDEF/I Concurso IDeA en dos etapas ID15I10284; FONDECYT 1141036, 1141201, and 1161448; and FONDECYT PostDoctorado 2017 3170737.
Abstract
Purpose
To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions.
Methods
We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes.
Results
When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm3 and 20 ms, respectively.
Conclusions
Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882–1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
mrm26834-sup-0001-supptables.docx25.5 KB | Table S1. Stroke Volume Measurements Prescribed in the Fluid Pump and Obtained With MRI (Difference in Percentage) Table S2. Mean and Standard Deviation of Peak Flow (mL/s), Mean Velocity (cm/s), and Stroke Volume (mL) of 2D and 4D Flow Data of the Different Studied Segments of the Aortic Phantom Table S3. Mean Percentage Error Between 2D Flow And 4D Flow Acquisitions for Peak Flow (mL/s), Mean Velocity (cm/s), and Stroke Volume (mL) of the Different Studied Segments of the Aortic Phantom Table S4. Mean and Standard Deviation of WSS (n/m2) of All 4D Flow Data at Different Regions of the Aorta |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 2005; 15: 2172–2184.
- 2 Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol 2009; 192: 662–675.
- 3 Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 2015; 17: 71.
- 4 Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10: 715–722.
- 5 Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 2002; 22: 651–671.
- 6 Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson 2005; 7: 705–716.
- 7 Markl M, Schnell S, Wu C, Bollache E, Jarvis K, Barker AJ, Robinson JD, Rigsby CK. Advanced flow MRI: emerging techniques and applications. Clin Radiol 2016; 71: 779–795.
- 8 Brix L, Ringgaard S, Rasmusson A, Sorensen TS, Kim WY. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 2009; 11: 3.
- 9 Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T, Beerbaum P. Systemic-to-pulmonary collateral flow in patients with palliative univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 2012; 14: 25.
- 10 Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging 2010; 32: 677–683.
- 11 Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, Kuehne T. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 2013; 37: 208–216.
- 12 Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther 2014; 4: 173–192.
- 13 Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015; 17: 72.
- 14 Markl M, Chan FP, Alley MT, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 2003; 17: 499–506.
- 15 Markl M, Schnell S, Barker AJ. 4D flow imaging: current status to future clinical applications. Curr Cardiol Rep 2014; 16: 481.
- 16 Hope MD, Sedlic T, Dyverfeldt P. Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging 2013; 28: 217–230.
- 17 Sotelo J, Urbina J, Valverde I, Tejos C, Irarrázaval P, Hurtado DE, Uribe S. Quantification of wall shear stress using a finite-element method in multidimensional phase-contrast MR data of the thoracic aorta. J Biomech 2015; 48: 1817–1827.
- 18 Sotelo J, Urbina J, Valverde I, Mura J, Tejos C, Irarrazaval P, Andia ME, Hurtado DE, Uribe S. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn Reson Med 2018; 79: 541–553.
- 19 Sotelo J, Urbina J, Valverde I, Tejos C, Irarrazaval P, Andia ME, Uribe S, Hurtado DE. 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. IEEE Trans Med Imaging 2016; 35: 1475–1487.
- 20 Burk J, Blanke P, Stankovic Z, Barker A, Russe M, Geiger J, Frydrychowicz A, Langer M, Markl M. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson 2012; 14: 84.
- 21 von Knobelsdorff-Brenkenhoff F, Trauzeddel RF, Barker AJ, Gruettner H, Markl M, Schulz-Menger J. Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D-flow MRI. Int J Cardiol 2014; 170: 426–433.
- 22 Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 2012; 5: 457–466.
- 23 Markl M, Draney MT, Miller DC, Levin JM, Williamson EE, Pelc NJ, Liang DH, Herfkens RJ. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 2005; 130: 456–463.
- 24 Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 2010; 255: 53–61.
- 25 Arnold R, Neu M, Hirtler D, Gimpel C, Markl M, Geiger J. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome. Pediatr Radiol 2017; 47: 382–390.
- 26 Geiger J, Markl M, Herzer L, Hirtler D, Loeffelbein F, Stiller B, Langer M, Arnold R. Aortic flow patterns in patients with Marfan syndrome assessed by flow-sensitive four-dimensional MRI. J Magn Reson Imaging 2012; 35: 594–600.
- 27 Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT, Higgins CB. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging 2011; 4: 781–787.
- 28 Markl M, Geiger J, Kilner PJ, Föll D, Stiller B, Beyersdorf F, Arnold R, Frydrychowicz A. Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 2011; 39: 206–212.
- 29 Kvitting JP, Ebbers T, Wigstrom L, Engvall J, Olin CL, Bolger AF. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg 2004; 127: 1602–1607.
- 30 Frydrychowicz A, Markl M, Hirtler D, et al. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Invest Radiol 2011; 46: 317–325.
- 31 Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, Pelc NJ, Herfkens RJ. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr 2004; 28: 459–468.
- 32 Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, Alley MT, Higgins CB. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 2010; 31: 711–718.
- 33 Nilsson A, Bloch KM, Töger J, Heiberg E, Ståhlberg F. Accuracy of four-dimensional phase-contrast velocity mapping for blood flow visualizations: a phantom study. Acta Radiol 2013; 54: 663–671.
- 34 Kweon J, Yang DH, Kim GB, Kim N, Paek M, Stalder AF, Greiser A, Kim YH. Four-dimensional flow MRI for evaluation of post-stenotic turbulent flow in a phantom: comparison with flowmeter and computational fluid dynamics. Eur Radiol 2016; 26: 3588–3597.
- 35 Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 2009; 62: 984–992.
- 36 Kanski M, Töger J, Steding-Ehrenborg K, Xanthis C, Bloch KM, Heiberg E, Carlsson M, Arheden H. Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use: a head-to-head comparison. BMC Med Imaging 2015; 15: 20.
- 37 Potters WV, van Ooij P, Marquering H, vanBavel E, Nederveen AJ. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J Magn Reson Imaging 2015; 41: 505–516.
- 38 Greil G, Geva T, Maier SE, Powell AJ. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 2002; 15: 47–54.
- 39 Gatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 2010; 12: 5.
- 40 Roldán-Alzate A, García-Rodríguez S, Anagnostopoulos PV, Srinivasan S, Wieben O, François CJ. Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation. J Biomech 2015; 48: 1325–1330.
- 41 Töger J, Bidhult S, Revstedt J, Carlsson M, Arheden H, Heiberg E. Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-induced fluorescence. Magn Reson Med 2016; 75: 1064–1075.
- 42 Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, Reiber JH, de Roos A, van der Geest RJ. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 2008; 249: 792–800.
- 43 Birjiniuk J, Ruddy JM, Iffrig E, Henry TS, Leshnower BG, Oshinski JN, Ku DN, Veeraswamy RK. Development and testing of a silicone in vitro model of descending aortic dissection. J Surg Res 2015; 198: 502–507.
- 44 Garg P, Westenberg J, van den Boogaard P, et al. Comparison of fast acquisition strategies in whole-heart four-dimensional flow cardiac MR: two-center, 1.5 Tesla, phantom and in vivo validation study. J Magn Reson Imaging 2018; 47: 272–281.
- 45 Urbina J, Sotelo JA, Springmüller D, et al. Realistic aortic phantom to study hemodynamics using MRI and cardiac catheterization in normal and aortic coarctation conditions. J Magn Reson Imaging 2016; 44: 683–697.
- 46 Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001; 10: 266–277.
- 47 Carlsson M, Töger J, Kanski M, Bloch KM, Ståhlberg F, Heiberg E, Arheden H. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 2011; 13: 55.
- 48 Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging 2016; 32: 1529–1541.
- 49 Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 2010; 12: 9.
- 50 Cibis M, Potters WV, Gijsen FJ, Marquering H, van Ooij P, vanBavel E, Wentzel JJ, Nederveen AJ. The effect of spatial and temporal resolution of cine phase contrast MRI on wall shear stress and oscillatory shear index assessment. PLoS One 2016; 11: e0163316.
- 51 Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008; 60: 1218–1231.
- 52 Petersson S, Dyverfeldt P, Ebbers T. Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J Magn Reson Imaging 2012; 36: 128–138.