Numerical simulations of carotid MRI quantify the accuracy in measuring atherosclerotic plaque components in vivo
Corresponding Author
Harm A. Nieuwstadt
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Correspondence to: Harm A. Nieuwstadt, Erasmus Medical Center, Department of Biomedical Engineering, Biomechanics Laboratory Ee2322, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands. E-mail: [email protected]Search for more papers by this authorMartine T. B. Truijman
Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
Search for more papers by this authorM. Eline Kooi
Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
Search for more papers by this authorAad van der Lugt
Department of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorAnton F. W. van der Steen
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorJolanda J. Wentzel
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorMarcel Breeuwer
Philips Healthcare, Best, the Netherlands
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
Search for more papers by this authorFrank J. H. Gijsen
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorCorresponding Author
Harm A. Nieuwstadt
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Correspondence to: Harm A. Nieuwstadt, Erasmus Medical Center, Department of Biomedical Engineering, Biomechanics Laboratory Ee2322, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands. E-mail: [email protected]Search for more papers by this authorMartine T. B. Truijman
Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
Search for more papers by this authorM. Eline Kooi
Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
Search for more papers by this authorAad van der Lugt
Department of Radiology, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorAnton F. W. van der Steen
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorJolanda J. Wentzel
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorMarcel Breeuwer
Philips Healthcare, Best, the Netherlands
Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
Search for more papers by this authorFrank J. H. Gijsen
Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
Search for more papers by this authorAbstract
Purpose
Atherosclerotic carotid plaques can be quantified in vivo by MRI. However, the accuracy in segmentation and quantification of components such as the thin fibrous cap (FC) and lipid-rich necrotic core (LRNC) remains unknown due to the lack of a submillimeter scale ground truth.
Methods
A novel approach was taken by numerically simulating in vivo carotid MRI providing a ground truth comparison. Upon evaluation of a simulated clinical protocol, MR readers segmented simulated images of cross-sectional plaque geometries derived from histological data of 12 patients.
Results
MR readers showed high correlation (R) and intraclass correlation (ICC) in measuring the luminal area (R = 0.996, ICC = 0.99), vessel wall area (R = 0.96, ICC = 0.94) and LRNC area (R = 0.95, ICC = 0.94). LRNC area was underestimated (mean error, −24%). Minimum FC thickness showed a mediocre correlation and intraclass correlation (R = 0.71, ICC = 0.69).
Conclusion
Current clinical MRI can quantify carotid plaques but shows limitations for thin FC thickness quantification. These limitations could influence the reliability of carotid MRI for assessing plaque rupture risk associated with FC thickness. Overall, MRI simulations provide a feasible methodology for assessing segmentation and quantification accuracy, as well as for improving scan protocol design. Magn Reson Med 72:188–201, 2014. © 2013 Wiley Periodicals, Inc.
REFERENCES
- 1Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47: C7–C12.
- 2Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 2011; 9: 1315–1330.
- 3Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012; 125: e2–e220.
- 4Li F, Yarnykh VL, Hatsukami TS, Chu B, Balu N, Wang J, Underhill HR, Zhao X, Smith R, Yuan C. Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imag 2010; 31: 168–176.
- 5Kerwin WS, Canton G. Advanced techniques for MRI of atherosclerotic plaque. Top Magn Reson Imag 2009; 20: 217–225.
- 6Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology 2010; 52: 253–274.
- 7Underhill HR, Hatsukami TS, Fayad AZ, Fuster V, Yuan C. MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol 2010; 7: 165–173.
- 8Wang J, Balu N, Canton G, Yuan C. Imaging biomarkers of cardiovascular disease. J Magn Reson Imag 2010; 32: 502–515.
- 9Cappendijk VC, Kessels AGH, Heeneman S, Cleutjens KB, Schurink GW, Welten RJ, Mess WH, van Suylen RJ, Leiner T, Daemen MJ, et al. Comparison of lipid-rich necrotic core size in symptomatic and asymptomatic carotid atherosclerotic plaque: initial results. J Magn Reson Imaging 2008; 27: 1356–1361.
- 10Kwee RM, van Oostenbrugge RJ, Prins MH, Ter Berg JW, Franke CL, Korten AG, Meems BJ, van Engelshoven JM, Wildberger JE, Mess WH, et al. Symptomatic patients with mild and moderate carotid stenosis: plaque features at MRI and association with cardiovascular risk factors and statin use. Stroke 2010; 41: 1389–1393.
- 11Hofman JMA, Branderhorst WJ, ten Eikelder HMM, Cappendijk VC, Heeneman S, Kooi ME, Hilbers PAJ, ter Haar Romeny BM. Quantification of atherosclerotic plaque components using in vivo MRI and supervised classifiers. Magn Reson Med 2006; 55: 790–799.
- 12Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005; 25: 234–239.
- 13Liu F, Xu D, Ferguson MS, Chu B, Saam T, Takaya N, Hatsukami TS, Yuan C, Kerwin WS. Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps. Magn Reson Med 2006: 55: 659–668.
- 14Sakellarios AI, Stefanou K, Siogkas P, Tsakanikas VD, Bourantas CV, Athanasiou L, Exarchos TP, Fotiou E, Naka KK, Papafaklis MI, et al. Novel methodology for 3D reconstruction of carotid arteries and plaque characterization based upon magnetic resonance imaging carotid angiography data. Magn Reson Imag 2012; 30: 1068–1082.
- 15van't Klooster R, Naggara O, Marsico R, Reiber JHC, Meder JF, van der Geest RJ, Touze E, Oppenheim C. Automated versus manual in vivo segmentation of carotid plaque MRI. Am J Neuroradiol 2012; 33: 1621–1627.
- 16Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med 2002; 47: 149–159.
- 17Sadat U, Teng Z, Gillard JH. Biomechanical structural stresses of atherosclerotic plaques. Expert Rev Cardiovasc Ther 2010; 8: 1469–1481.
10.1586/erc.10.130 Google Scholar
- 18Li Z, Howarth S, Trivedi RA, U-King-im JM, Graves MJ, Brown A, Wang L, Gillard JH. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech 2006; 39: 2611–2622.
- 19Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, Zheng J, Woodard PK, Yuan C. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses. An in vivo MRI-based 3D fluid-structure interaction study. Stroke 2009; 40: 3258–3263.
- 20Gao H, Long Q, Graves M, Gillard JH, Li Z. Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in-vivo magnetic resonance images of four patients. J Biomech 2009; 42: 1416–1423.
- 21Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000; 102: 959–964.
- 22Yuan C, Zhang S, Polissar NL, Echelard D, Ortiz G, Davis WJ, Ellington E, Ferguson MS, Hatsukami TS. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181–185.
- 23Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imag 2003; 17: 410–420.
- 24Kwee RM, Engelshoven JMA, Mess WH, ter Berg JW, Schreuder FH, Franke CL, Korten AG, Meems BJ, van Oostenbrugge RJ, Wildberger JE, et al. Reproducibility of fibrous cap status assessment of carotid artery plaques by contrast-enhanced MRI. Stroke 2009; 40: 3017–3021.
- 25Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, Takaya N, Polissar NL, Yuan C. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 2005; 112: 3437–3444.
- 26Kerwin WS, Zhao X, Yuan C, Hatsukami TS, Maravilla KR, Underhill HR, Zhao X. Contrast-enhanced MRI of carotid atherosclerosis: dependence on contrast agent. J Magn Reson Imag 2009; 30: 35–40.
- 27Trivedi RA, U-King-Im J, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, Gillard JH. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology 2004; 46: 738–743.
- 28Gao H, Long Q, Graves M, Gillard JH, Li Z. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging. J Magn Reson Imaging 2009; 30: 85–93.
- 29Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. MAGMA 2004; 16: 227–234.
- 30Redgrave JN, Gallagher P, Lovett JK, Rothwell PM. Critical cap thickness and rupture in symptomatic carotid plaques: the Oxford plaque study. Stroke 2008; 39: 1722–1729.
- 31Qian D, Bottomley PA. High-resolution intravascular magnetic resonance quantification of atherosclerotic plaque at 3T. J Card Magn Reson 2012; 14: 20.
- 32Saba L, Potters F, van der Lugt A, Mallarini G. Imaging of the fibrous cap in atherosclerotic carotid plaque. Cardiovasc Intervent Radiol 2010; 33: 681–689.
- 33Gao H, Long Q. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J Biomech 2008; 41: 3053–3059.
- 34Teng Z, Sadat U, Ji G, Zhu C, Young VE, Graves MJ, Gillard JH. Lumen irregularity dominates the relationship between mechanical stress condition, fibrous-cap thickness, and lumen curvature in carotid atherosclerotic plaque. J Biomech Eng 2011; 133: 034501–1–4.
- 35Akyildiz AC, Speelman L, van Brummelen H, Gutiérrez MA, Virmani R, van der Lugt A, van der Steen AFW, Wentzel JJ, Gijsen FJH. Effects of intima stiffness and plaque morphology on peak cap stress. BioMed Eng OnLine 2011; 10: 25.
- 36Speelman L, Akyildiz AC, den Adel B, Wentzel JJ, van der Steen AF, Virmani R, van der Weerd L, Jukema JW, Poelmann RE, van Brummelen EH, et al. Initial stress in biomechanical models of atherosclerotic plaques. J Biomech 2011; 44: 2376–2382.
- 37U-King-Im JM, Tang TY, Patterson A, Cernicanu A, Scoazec JY, Douek P, Boussel L. Characterization of carotid atheroma in symptomatic and asymptomatic patients using high resolution MRI. J Neurol Neurosurg Psychiatry 2008; 79: 905–912.
- 38Young VE, Patterson AJ, Sadat U, Bowden DJ, Graves MJ, Tang TY, Priest AN, Skepper JN, Kirkpatrick PJ, Gillard JH. Diffusion-weighted magnetic resonance imaging for the detection of lipid-rich necrotic core in carotid atheroma in vivo. Neuroradiology 2010; 52: 929–936.
- 39Groen HC, van Walsum T, Rozie S, Klein S, van Gaalen K, Gijsen FJ, Wielopolski PA, van Beusekom HM, de Crom R, Verhagen HJ, et al. Three-dimensional registration of histology of human atherosclerotic carotid plaques to in-vivo imaging. J Biomech 2010; 43: 2087–2092.
- 40Coombs BD, Rapp JH, Ursell PC, Reilly LM, Saloner D. Structure of plaque at carotid bifurcation: high-resolution MRI with histological correlation. Stroke 2001; 32: 2516–2521.
- 41Stöcker T, Vahedipour K, Pflugfelder D, Shah NJ. High-performance computing MRI simulations. Magn Reson Med 2010; 64: 186–193.
- 42Yarnykh VL, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med 2002; 48: 899–905.
- 43Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cia J, Hatsukami TS. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 2002; 15: 62–67.
- 44Wasserman BA, Casal SG, Astor BC, Aletras AH, Arai AE. Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imaging 2005; 21: 91–95.
- 45Robson MD, Gore JC, Constable RT. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 1997; 38: 733–740.
- 46Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910–914.
- 47Sijbers J, den Dekker AJ. Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn Reson Med 2004; 51: 586–594.
- 48Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005; 54: 507–512.
- 49Biasiolli L, Lindsay AC, Choudhury RP, Robson MC. In-vivo T2 mapping of atherosclerotic plaques in carotid arteries. J Cardiovasc Magn Res 2012; 14: P134.
10.1186/1532-429X-14-S1-P134 Google Scholar
- 50Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan M, Hall LO, Thatcher RW, Silbiger ML. MRI segmentation: methods and applications. Magn Res Imag 1995; 13: 343–368.
- 51Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comp Vision 1988; 321–331.
- 52van Engelen A, Niessen WJ, Klein S, Groen HC, Verhagen HJM, Wentzel JJ, van der Lugt A, de Bruijne M. Multi-feature-based plaque characterization in ex vivo MRI trained by registration to 3D histology. Phys Med Biol 2012; 57: 241–256.
- 53Nieuwstadt HA, Akyildiz AC, Speelman L, Virmani R, van der Lugt A, van der Steen AFW, Wentzel JJ, Gijsen FJH. The influence of axial image resolution on atherosclerotic plaque stress computations. J Biomech 2013; 46: 689–695.
- 54Hashemi RH, Bradley GW, Lisanti CJ. MRI: the basics. Philadelphia: Lippincott Williams & Wilkins; 2010. 400 p.
- 55Toussaint J, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circ 1996; 94: 932–938.
- 56Morrisett J, Vick W, Sharma R, Lawrie G, Reardon M, Ezell E, Schwartz J, Hunter G, Gorenstein D. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magn Res Imag 2003; 21: 465–474.
- 57Degnan AJ, Young VE, Tang TY, Gill AB, Graves MJ, Gillard JH, Patterson AJ. Ex vivo study of carotid endarterectomy specimens: quantitative relaxation times within atherosclerotic plaque tissues. Magn Res Imag 2012; 30: 1017–1021.
- 58Baum G, Menezes G, Helguera M. Simulation of high-resolution magnetic resonance images on the IBM Blue Gene/L supercomputer using SIMRI. Int J Biomed Imag 2011; 2011: 305968