Motion compensated generalized reconstruction for free-breathing dynamic contrast-enhanced MRI
M. Filipovic
IADI Lab, INSERM-U947, Nancy, France
Nancy-Universite, Nancy, France
Search for more papers by this authorP.-A. Vuissoz
IADI Lab, INSERM-U947, Nancy, France
Nancy-Universite, Nancy, France
Search for more papers by this authorM. Claudon
IADI Lab, INSERM-U947, Nancy, France
University Hospital Nancy, Nancy, France
Search for more papers by this authorCorresponding Author
J. Felblinger
IADI Lab, INSERM-U947, Nancy, France
INSERM-CIT801, Nancy, France
IADI Laboratory, INSERM-U947, Tour Drouet, CHU de Brabois, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France===Search for more papers by this authorM. Filipovic
IADI Lab, INSERM-U947, Nancy, France
Nancy-Universite, Nancy, France
Search for more papers by this authorP.-A. Vuissoz
IADI Lab, INSERM-U947, Nancy, France
Nancy-Universite, Nancy, France
Search for more papers by this authorM. Claudon
IADI Lab, INSERM-U947, Nancy, France
University Hospital Nancy, Nancy, France
Search for more papers by this authorCorresponding Author
J. Felblinger
IADI Lab, INSERM-U947, Nancy, France
INSERM-CIT801, Nancy, France
IADI Laboratory, INSERM-U947, Tour Drouet, CHU de Brabois, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France===Search for more papers by this authorAbstract
The analysis of abdominal and thoracic dynamic contrast-enhanced MRI is often impaired by artifacts and misregistration caused by physiological motion. Breath-hold is too short to cover long acquisitions. A novel multipurpose reconstruction technique, entitled dynamic contrast-enhanced generalized reconstruction by inversion of coupled systems, is presented. It performs respiratory motion compensation in terms of both motion artefact correction and registration. It comprises motion modeling and contrast-change modeling. The method feeds on physiological signals and x-f space properties of dynamic series to invert a coupled system of linear equations. The unknowns solved for represent the parameters for a linear nonrigid motion model and the parameters for a linear contrast-change model based on B-splines. Performance is demonstrated on myocardial perfusion imaging, on six simulated data sets and six clinical exams. The main purpose consists in removing motion-induced errors from time–intensity curves, thus improving curve analysis and postprocessing in general. This method alleviates postprocessing difficulties in dynamic contrast-enhanced MRI and opens new possibilities for dynamic contrast-enhanced MRI analysis. Magn Reson Med, 2011. © 2010 Wiley-Liss, Inc.
REFERENCES
- 1 Manke D, Nehrke K, Börnert P. Novel prospective respiratory motion correction approach for free-breathing coronary MR angiography using a patient-adapted affine motion model. Magn Reson Med 2003; 50: 122–131.
- 2 Pedersen H, Kelle S, Ringgaard S, Schnackenburg B, Nagel E, Nehrke K, Kim WY. Quantification of myocardial perfusion using free-breathing MRI and prospective slice tracking. Magn Reson Med 2009; 61: 734–738.
- 3 Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med 2004; 51: 93–102.
- 4 Brau ACS, Brittain JH. Generalized self-navigated motion detection technique: preliminary investigation in abdominal imaging. Magn Reson Med 2006; 55: 263–270.
- 5
Atkinson D,
Hill DL,
Stoyle PN,
Summers PE,
Clare S,
Bowtell R,
Keevil SF.
Automatic compensation of motion artifacts in MRI.
Magn Reson Med
1999;
41:
163–170.
10.1002/(SICI)1522-2594(199901)41:1<163::AID-MRM23>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 6 Odille F, Vuissoz P, Marie P, Felblinger J. Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 2008; 60: 146–157.
- 7 Odille F, Uribe S, Batchelor P, Prieto C, Schaeffter T, Atkinson D. Model-based reconstruction for cardiac cine MRI without ECG or breath holding. Magn Reson Med 2010; 63: 1247–1257.
- 8 Zöllner FG, Sance R, Rogelj P, Ledesma-Carbayo MJ, Rørvik J, Santos A, Lundervold A. Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 2009; 33: 171–181.
- 9 Wong KK, Yang ES, Wu EX, Tse H, Wong ST. First-pass myocardial perfusion image registration by maximization of normalized mutual information. J Magn Reson Imaging 2008; 27: 529–537.
- 10 Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D. Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol 2007; 52: 5147–5156.
- 11 Milles J, van der Geest RJ, Jerosch-Herold M, Reiber JHC, Lelieveldt BPF. Fully automated motion correction in first-pass myocardial perfusion MR image sequences. IEEE Trans Med Imaging 2008; 27: 1611–1621.
- 12 Lin W, Guo J, Rosen MA, Song HK. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 2008; 60: 1135–1146.
- 13 Kellman P, Arai AE. Imaging sequences for first pass perfusion—a review. J Cardiovasc Magn Reson 2007; 9: 525–537.
- 14 Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004; 19: 758–770.
- 15 Thompson RB, McVeigh ER. Cardiorespiratory-resolved magnetic resonance imaging: measuring respiratory modulation of cardiac function. Magn Reson Med 2006; 56: 1301–1310.
- 16 Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 2002; 29: 886–897.
- 17 Pack NA, DiBella EVR, Rust TC, Kadrmas DJ, McGann CJ, Butterfield R, Christian PE, Hoffman JM. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method. J Cardiovasc Magn Reson 2008; 10: 52.
- 18 Batchelor PG, Atkinson D, Irarrazaval P, Hill DLG, Hajnal J, Larkman D. Matrix description of general motion correction applied to multishot images. Magn Reson Med 2005; 54: 1273–1280.
- 19 Odille F, Cîndea N, Mandry D, Pasquier C, Vuissoz P, Felblinger J. Generalized MRI reconstruction including elastic physiological motion and coil sensitivity encoding. Magn Reson Med 2008; 59: 1401–1411.
- 20 Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 1986; 7: 856–869.
- 21 Schumaker L. Spline functions: basic theory. New York: Wiley; 1981.
- 22 Odille F, Pasquier C, Abächerli R, Vuissoz P, Zientara GP, Felblinger J. Noise cancellation signal processing method and computer system for improved real-time electrocardiogram artifact correction during MRI data acquisition. IEEE Trans Biomed Eng 2007; 54: 630–640.
- 23 Slavin GS, Wolff SD, Gupta SN, Foo TK. First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 2001; 219: 258–263.
- 24 Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 2006; 56: 993–1000.
- 25 Awate SP, DiBella EVR, Tasdizen T, Whitaker RT. Model-based image reconstruction for dynamic cardiac perfusion MRI from sparse data. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 936–941.
- 26 Felblinger J, Boesch C. Amplitude demodulation of the electrocardiogram signal (ECG) for respiration monitoring and compensation during MR examinations. Magn Reson Med 1997; 38: 129–136.
- 27 Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D. Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999; 18: 712–721.
- 28 Schnabel J, Rueckert D, Quist M, Blackall J, Castellano Smith A, Hartkens T, Penney G, Hall W, Liu H, Truwit C, Gerritsen F, Hill D, Hawkes D. A generic framework for non-rigid registration based on non-uniform multi-level free-form deformation. Fourth Int Conf Med Image Comput Comput Assist Interv (MICCAI '01) 2001; 1: 573–581.
- 29 American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 2002; 18: 539–542.
- 30 Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 2009; 62: 706–716.
- 31 Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031–1042.
- 32 Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182–1195.
- 33 Nehrke K, Börnert P. Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner. Magn Reson Med 2005; 54: 1130–1138.