Decay property of solutions to the wave equation with space-dependent damping, absorbing nonlinearity, and polynomially decaying data
Corresponding Author
Yuta Wakasugi
Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527 Japan
Correspondence
Yuta Wakasugi, Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
Email: [email protected]
Communicated by: M. Reissig
Search for more papers by this authorCorresponding Author
Yuta Wakasugi
Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527 Japan
Correspondence
Yuta Wakasugi, Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
Email: [email protected]
Communicated by: M. Reissig
Search for more papers by this authorAbstract
We study the large time behavior of solutions to the semilinear wave equation with space-dependent damping and absorbing nonlinearity in the whole space or exterior domains. Our result shows how the amplitude of the damping coefficient, the power of the nonlinearity, and the decay rate of the initial data at the spatial infinity determine the decay rates of the energy and the -norm of the solution. In the appendix, we also give a survey of basic results on the local and global existence of solutions and the properties of weight functions used in the energy method.
CONFLICT OF INTEREST
This work does not have any conflict of interest.
REFERENCES
- 1Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equations. Publ Res Inst Math Sci. 1976; 12: 169-189.
10.2977/prims/1195190962 Google Scholar
- 2Hsiao L, Liu T-P. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm Math Phys. 1992; 43: 599-605.
- 3Chill R, Haraux A. An optimal estimate for the difference of solutions of two abstract evolution equations. J Differ Equ. 2003; 193: 385-395.
- 4Hosono T, Ogawa T. Large time behavior and - estimate of solutions of 2-dimensional nonlinear damped wave equations. J Differ Equ. 2004; 203: 82-118.
- 5Ikeda M, Inui T, Wakasugi Y. The Cauchy problem for the nonlinear damped wave equation with slowly decaying data. NoDEA Nonlinear Differ Equ Appl. 2017; 24(2): 10. 53 pp.
- 6Ikeda M, Inui T, Okamoto M, Wakasugi Y. - estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Commun Pure Appl Anal. 2019; 18: 1967-2008.
- 7Ikehata R. Diffusion phenomenon for linear dissipative wave equations in an exterior domain. J Differ Equ. 2002; 186: 633-651.
- 8Ikehata R, Nishihara K. Diffusion phenomenon for second order linear evolution equations. Studia Math. 2003; 158: 153-161.
- 9Karch G. Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Studia Math. 2000; 143: 175-197.
- 10Kawashima S, Nakao M, Ono K. On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term. J Math Soc Japan. 1995; 47: 617-653.
- 11Marcati P, Nishihara K. The - estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media. J Differ Equ. 2003; 191: 445-469.
- 12Michihisa H. -asymptotic profiles of solutions to linear damped wave equations. J Differ Equ. 2021; 296: 573-592.
- 13Narazaki T. - estimates for damped wave equations and their applications to semi-linear problem. J Math Soc Japan. 2004; 56: 585-626.
- 14Nishihara K. - estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math Z. 2003; 244: 631-649.
- 15Sakata S, Wakasugi Y. Movement of time-delayed hot spots in Euclidean space. Math Z. 2017; 285: 1007-1040.
- 16Sobajima M. Higher order asymptotic expansion of solutions to abstract linear hyperbolic equations. Math Ann. 2021; 380: 1-19.
- 17Takeda H. Higher-order expansion of solutions for a damped wave equation. Asymptot Anal. 2015; 94: 1-31.
- 18Yang H, Milani A. On the diffusion phenomenon of quasilinear hyperbolic waves. Bull Sci Math. 2000; 124: 415-433.
- 19Mochizuki K. Scattering theory for wave equations with dissipative terms. Publ Res Inst Math Sci. 1976; 12: 383-390.
10.2977/prims/1195190721 Google Scholar
- 20Mochizuki K, Nakazawa H. Energy decay and asymptotic behavior of solutions to the wave equations with linear dissipation. Publ RIMS Kyoto Univ. 1996; 32: 401-414.
- 21Matsuyama T. Asymptotic behavior of solutions for the wave equation with an effective dissipation around the boundary. J Math Anal Appl. 2002; 271: 467-492.
- 22Ueda H. A new example of the dissipative wave equations with the total energy decay. Hiroshima Math J. 2016; 46: 187-193.
- 23Matsumura A. Energy decay of solutions of dissipative wave equations. Proc Japan Acad Ser A. 1977; 53: 232-236.
10.3792/pjaa.53.232 Google Scholar
- 24Uesaka Y. The total energy decay of solutions for the wave equation with a dissipative term. J Math Kyoto Univ. 1979; 20: 57-65.
- 25Todorova G, Yordanov B. Weighted -estimates for dissipative wave equations with variable coefficients. J Differ Equ. 2009; 246: 4497-4518.
- 26Ikehata R, Tanizawa K. Global existence of solutions for semilinear damped wave equations in with noncompactly supported initial data. Nonlinear Anal. 2005; 61: 1189-1208.
- 27Ikehata R. Some remarks on the wave equation with potential type damping coefficients. Int J Pure Appl Math. 2005; 21: 19-24.
- 28Radu P, Todorova G, Yordanov B. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete Contin Dyn Syst Ser S. 2009; 2: 609-629.
- 29Radu P, Todorova G, Yordanov B. Decay estimates for wave equations with variable coefficients. Trans Amer Math Soc. 2010; 362: 2279-2299.
- 30Sobajima M, Wakasugi Y. Remarks on an elliptic problem arising in weighted energy estimates for wave equations with space-dependent damping term in an exterior domain. AIMS Math. 2017; 2: 1-15.
- 31Sobajima M, Wakasugi Y. Weighted energy estimates for wave equation with space-dependent damping term for slowly decaying initial data. Commun Contemp Math. 2019; 21(5): 1850035, 30 pp.
- 32Sobajima M, Wakasugi Y. Supersolutions for parabolic equations with unbounded or degenerate diffusion coefficients and their applications to some classes of parabolic and hyperbolic equations. J Math Soc Japan. 2021; 73: 1091-1128.
- 33Joly R, Royer J. Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation. J Math Soc Japan. 2018; 70: 1375-1418.
- 34Nishiyama H. Remarks on the asymptotic behavior of the solution to damped wave equations. J Differ Equ. 2016; 261: 3893-3940.
- 35Radu P, Todorova G, Yordanov B. Diffusion phenomenon in Hilbert spaces and applications. J Differ Equ. 2011; 250: 4200-4218.
- 36Radu P, Todorova G, Yordanov B. The generalized diffusion phenomenon and applications. SIAM J Math Anal. 2016; 48: 174-203.
- 37Sobajima M, Wakasugi Y. Diffusion phenomena for the wave equation with space-dependent damping in an exterior domain.J Differ Equ. 2016; 261: 5690-5718.
- 38Sobajima M, Wakasugi Y. Diffusion phenomena for the wave equation with space-dependent damping term growing at infinity.Adv Differ Equ. 2018; 23: 581-614.
- 39Wakasugi Y. On diffusion phenomena for the linear wave equation with space-dependent damping. J Hyp Differ Equ. 2014; 11: 795-819.
- 40Ikehata R, Todorova G, Yordanov B. Optimal decay rate of the energy for wave equations with critical potential. J Math Soc Japan. 2013; 65: 183-236.
- 41Rauch J, Taylor M. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ Math J. 1974; 24: 79-86.
- 42Bardos C, Lebeau G, Rauch J. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary.SIAM J Control Optim. 1992; 30: 1024-1065.
- 43Aloui L, Ibrahim S, Khenissi M. Energy decay for linear dissipative wave equations in exterior domains. J Differ Equ. 2015; 259: 2061-2079.
- 44Burq N, Joly R. Exponential decay for the damped wave equation in unbounded domains. Commun Contemp Math. 2016; 18(06):1650012.
- 45Daoulatli M. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evol Equ Control Theory. 2016; 5: 37-59.
- 46Ikehata R. Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain. J Differ Equ. 2003; 188: 390-405.
- 47Kawashita M, Nakazawa H, Soga H. Non decay of the total energy for the wave equation with dissipative term of spatial anisotropy. Nagoya Math J. 2004; 174: 115-126.
- 48Nakao M. Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations. Math Z. 2001; 238: 781-797.
- 49Nishiyama H. Non uniform decay of the total energy of the dissipative wave equation. Osaka J Math. 2009; 46: 461-477.
- 50Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping. Comm Partial Differ Equ. 1990; 15: 205-235.
- 51Wirth J. Solution representations for a wave equation with weak dissipation. Math Meth Appl Sci. 2004; 27: 101-124.
- 52Wirth J. Asymptotic properties of solutions to wave equations with time-dependent dissipation. PhD thesis: TU Bergakademie Freiberg; 2005.
- 53Wirth J. Wave equations with time-dependent dissipation I. Non-effective dissipation, J Differ Equ. 2006; 222: 487-514.
- 54Wirth J. Wave equations with time-dependent dissipation II. Effective dissipation, J Differ Equ. 2007; 232: 74-103.
- 55Wirth J. Scattering and modified scattering for abstract wave equations with time-dependent dissipation. Adv Differ Equ. 2007; 12: 1115-1133.
- 56Yamazaki T. Asymptotic behavior for abstract wave equations with decaying dissipation. Adv Differ Equ. 2006; 11: 419-456.
- 57Fujita H. On the blowing up of solutions of the Cauchy problem for . J Fac Sci Univ Tokyo Sec. 1966; I(13): 109-124.
- 58Todorova G, Yordanov B. Critical exponent for a nonlinear wave equation with damping. J Differ Equ. 2001; 174: 464-489.
- 59Zhang QS. A blow-up result for a nonlinear wave equation with damping: the critical case. C R Acad Sci Paris Sér I Math. 2001; 333: 109-114.
- 60Kirane M, Qafsaoui M. Fujita's exponent for a semilinear wave equation with linear damping. Adv Nonlinear Stud. 2002; 2: 41-49.
- 61Hayashi N, Kaikina EI, Naumkin PI. Damped wave equation with super critical nonlinearities. Differ Integr Equ. 2004; 17: 637-652.
- 62Narazaki T, Nishihara K. Asymptotic behavior of solutions for the damped wave equation with slowly decaying data. J Math Anal Appl. 2008; 338: 803-819.
- 63Gallay T, Raugel G. Scaling variables and asymptotic expansions in damped wave equations. J Differ Equ. 1998; 150: 42-97.
- 64Kawakami T, Ueda Y. Asymptotic profiles to the solutions for a nonlinear damped wave equation. Differ Integr Equ. 2013; 26: 781-814.
- 65Kawakami T, Takeda H. Higher order asymptotic expansions to the solutions for a nonlinear damped wave equation. NoDEA Nonlinear Differ Equ Appl. 2016; 23(5): 54, 30 pp.
- 66Ikeda M, Sobajima M. Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method. Nonlinear Anal. 2019; 182: 57-74.
- 67Ikeda M, Taniguchi K, Wakasugi Y. Global existence and asymptotic behavior for nonlinear damped wave equations on measure spaces. arXiv:2106.10322v2.
- 68Ikehata R. Critical exponent for semilinear damped wave equations in the -dimensional half space. J Math Anal Appl. 2003; 288: 803-818.
- 69Ikehata R. Two dimensional exterior mixed problem for semilinear damped wave equations. J Math Anal Appl. 2005; 301: 366-377.
- 70Ogawa T, Takeda H. Non-existence of weak solutions to nonlinear damped wave equations in exterior domains. Nonlinear Anal. 2009; 70: 3696-3701.
- 71Ono K. Decay estimates for dissipative wave equations in exterior domains. J Math Anal Appl. 2003; 286: 540-562.
- 72Sobajima M. Global existence of solutions to semilinear damped wave equation with slowly decaying initial data in exterior domain. Differ Integr Equ. 2019; 32: 615-638.
- 73Ikeda M, Ogawa T. Lifespan of solutions to the damped wave equation with a critical nonlinearity. J Differ Equ. 2016; 261: 1880-1903.
- 74Ikeda M, Sobajima M. Remark on upper bound for lifespan of solutions to semilinear evolution equations in a two-dimensional exterior domain. J Math Anal Appl. 2019; 470: 318-326.
- 75Ikeda M, Wakasugi Y. A note on the lifespan of solutions to the semilinear damped wave equation. Proc Amer Math Soc. 2015; 143: 163-171.
- 76Lai NA, Zhou Y. The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in higher dimensions. J Math Pure Appl. 2019; 123: 229-243.
- 77Li T-T, Zhou Y. Breakdown of solutions to
. Discrete Contin Dynam Syst. 1995; 1: 503-520.
10.3934/dcds.1995.1.503 Google Scholar
- 78Nishihara K. - estimates for the 3-D damped wave equation and their application to the semilinear problem. Seminar Notes Math Sci. 2003; 6: 69-83. Ibaraki Univ.
- 79Ikehata R, Ohta M. Critical exponents for semilinear dissipative wave equations in . J Math Anal Appl. 2002; 269: 87-97.
- 80Nishihara K, Zhao H. Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption. J Math Anal Appl. 2006; 313: 598-610.
- 81Ikehata R, Nishihara K, Zhao H. Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption. J Differ Equ. 2006; 226: 1-29.
- 82Hamza M. Asymptotically self-similar solutions of the damped wave equation. Nonlinear Anal. 2010; 73: 2897-2916.
- 83Hayashi N, Kaikina EI, Naumkin PI. Damped wave equation with a critical nonlinearity. Trans Amer Math Soc. 2006; 358: 1165-1185.
- 84Hayashi N, Naumkin PI. Damped wave equation with a critical nonlinearity in higher space dimensions. J Math Appl Anal. 2017; 446: 801-822.
- 85Nishihara K. Global asymptotics for the damped wave equation with absorption in higher dimensional space. J Math Soc Japan. 2006; 58: 805-836.
- 86Ikehata R, Todorova G, Yordanov B. Critical exponent for semilinear wave equations with space-dependent potential. Funkcialaj Ekvacioj. 2009; 52: 411-435.
- 87Sobajima M. On global existence for semilinear wave equations with space-dependent critical damping. to appear in J. Math. Soc. Japan, arXiv:210606107v1.
- 88Ikeda M, Sobajima M. Life-span of blowup solutions to semilinear wave equation with space-dependent critical damping. Funkcialaj Ekvacioj. 2021; 64: 137-162.
- 89Li X. Critical exponent for semilinear wave equation with critical potential. NoDEA Nonlinear Differ Equ Appl. 2013; 20: 1379-1391.
- 90Todorova G, Yordanov B. Nonlinear dissipative wave equations with potential. Contemp Math. 2007; 426: 317-337.
10.1090/conm/426/08196 Google Scholar
- 91Nishihara K. Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term. Comm Partial Differ Equ. 2010; 35: 1402-1418.
- 92Lai NA, Schiavone NM, Takamura H. Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato's type lemma. J Differ Equ. 2020; 269: 11575-11620.
- 93Nishihara K, Sobajima M, Wakasugi Y. Critical exponent for the semilinear wave equations with a damping increasing in the far field. NoDEA Nonlinear Differ Equ Appl. 2018; 25(6): 55, 32 pp.
- 94Cazenave T, Haraux A. An Introduction to Semilinear Evolution Equations. Oxford University Press; 1998.
10.1093/oso/9780198502777.001.0001 Google Scholar
- 95Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer; 2011.
10.1007/978-0-387-70914-7 Google Scholar
- 96Ikawa M. Hyperbolic Partial Differential Equations and Wave Phenomena; 2000. Translations of Mathematical Monographs, American Mathematical Society.
10.1090/mmono/189 Google Scholar
- 97Dan W, Shibata Y. On a local energy decay of solutions of a dissipative wave equation. Funkcialaj Ekvacioj. 1995; 38: 545-568.
- 98Strauss WA. Nonlinear wave equations, (CBMS Reg. Conf. Ser. Math.) Providence RI: Am. Math. Soc; 1989.
- 99John F. Nonlinear Wave Equations, Formation of Singularities, Pitcher Lectures in the Mathematical Sciences at Lehigh University, Univ Lecture Ser., vol. 2. RI: Amer. Math. Soc., Providence; 1990.
10.1090/ulect/002 Google Scholar
- 100Beals R, Wong R. Special functions, A graduate text Cambridge Studies in Advanced Mathematics, Vol. 126. Cambridge: Cambridge University Press; 2010.
10.1017/CBO9780511762543 Google Scholar