Existence study of semilinear fractional differential equations and inclusions for multi–term problem under Riemann–Liouville operators
Elhabib Hadjadj
Laboratoire de la théorie des opérateurs et EDP, Université Echahid Hamma Lakhdar, El-Oued, Algérie
Search for more papers by this authorSafia Meftah
Laboratoire de la théorie des opérateurs et EDP, Université Echahid Hamma Lakhdar, El-Oued, Algérie
Search for more papers by this authorAbdallah Bensayah
Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla, Algérie
Search for more papers by this authorCorresponding Author
Brahim Tellab
Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla, Algérie
Correspondence
Brahim Tellab, Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, BP511, Ouargla 30000, Algérie.
Email: [email protected]
Communicated by: D. Baleanu
Search for more papers by this authorElhabib Hadjadj
Laboratoire de la théorie des opérateurs et EDP, Université Echahid Hamma Lakhdar, El-Oued, Algérie
Search for more papers by this authorSafia Meftah
Laboratoire de la théorie des opérateurs et EDP, Université Echahid Hamma Lakhdar, El-Oued, Algérie
Search for more papers by this authorAbdallah Bensayah
Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla, Algérie
Search for more papers by this authorCorresponding Author
Brahim Tellab
Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, Ouargla, Algérie
Correspondence
Brahim Tellab, Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, BP511, Ouargla 30000, Algérie.
Email: [email protected]
Communicated by: D. Baleanu
Search for more papers by this authorAbstract
In the present paper, we study the existence and uniqueness of the solution for multi–term fractional boundary value problem under Riemann–Liouville fractional operators by using Banach's fixed point theorem. Afterward, we investigate some existence results for a semilinear fractional differential inclusions multi–term problem by using some notions and properties on set-valued maps together with classical fixed point theorems due to Leray–Schauder. The cases when the set-valued function has convex as well as nonconvex values are considered. Finally, some examples are given to illustrate our main results.
CONFLICT OF INTEREST
This work does not have any conflicts of interest.
REFERENCES
- 1Boucenna D, Boulfoul A, Chidouh A, Ben Makhlouf A, Tellab B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J Appl Math Comput. 2021; 67(1): 605-621.
- 2Boulfoul A, Tellab B, Abdellouahab N, Zennir K. Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space. Math Methods Appl Sci. 2021; 44: 3509-3520.
- 3Etemad S, Rezapour S, Samei ME. On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Math Methods Appl Sci. 2020; 43(17): 9719-9734.
- 4Etemad S, Tellab B, Deressa CT, Alzabut J, Li Y, Rezapour S. On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials. Adv Differ Equ. 2021; 2021(1): 458.
- 5Rezapour S, Etemad S, Tellab B, Agarwal P, Guirao JLG. Numerical solutions caused by DGJIM and ADM methods for multi-term fractional bvp involving the generalized -RL-operators. Symmetry. 2021; 13(4): 532.
- 6Sitho S, Etemad S, Tellab B, Rezapour S, Ntouyas SK, Tariboon J. Approximate solutions of an extended multi-order boundary value problem by implementing two numerical algorithms. Symmetry. 2021; 13(8): 1341.
- 7Etemad S, Tellab B, Alzabut J, Rezapour S, Abbas MI. Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Advances Differ Equ. 2021; 2021(1): 428.
- 8Rezapour S, Tellab B, Deressa CT, Etemad S, Nonlaopon K. HU-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method. Fractal Fractional. 2021; 5(4): 166.
- 9Azzaoui B, Tellab B, Zennir K. Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces. Math Methods Appl Sci. 2022. doi:10.1002/mma.7623
- 10Azzaoui B, Tellab B, Zennir K. Positive solutions for a fractional configuration of the Riemann-Liouville semilinear differential equation. Math Methods Appl Sci. 2022. doi:10.1002/mma.8110
- 11Rezapour S, Azzaoui B, Tellab B, Etemad S, Masiha Hashem P. An analysis on the positive solutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J Funct Spaces. 2021; 2021: 1-10. doi:10.1155/2021/6022941
- 12Wahash HA, Panchal SK. Positive solutions for generalized two-term fractional differential equations with integral boundary conditions. J Math Anal Model. 2020; 1: 47-63.
10.48185/jmam.v1i1.35 Google Scholar
- 13Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of the Fractional Differential Equations, Vol. 204. Amsterdam, The Netherlands: North-Holland Mathematics Studies; 2006.
- 14Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999.
- 15Samko SG, Kilbas AA, Marichev OI, Integrals Fractional. Derivatives Theory and Applications. Yverdon, Switzerland: Gordon and Breach; 1993.
- 16Ahmad B, Nieto JJ. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol Methods Nonlinear Anal. 2010; 35: 295-304.
- 17Bai Z, Sun W. Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput Math Appl. 2012; 63: 1369-1381.
- 18Baleanu D, Mohammadi H, Rezapour S. The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Adv Differ Equ. 2013; 2013: 359.
- 19Baleanu D, Mohammadi H, Rezapour S. Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstr Appl Anal. 2012; 2012: 837437.
10.1155/2012/837437 Google Scholar
- 20Baleanu D, Mohammadi H, Rezapour S. Some existence results on nonlinear fractional differential equations. Philos Trans R Soc Lond A. 2013; 371:20120144.
- 21Baleanu D, Mohammadi H, Rezapour S. On a nonlinear fractional differential equation on partially ordered metric spaces. Adv Differ Equ. 2013; 2013: 83.
- 22Baleanu D, Nazemi Z, Rezapour S. The existence of positive solutions for a new coupled system of multi-term singular fractional integro-differential boundary value problems. Abstr Appl Anal. 2013; 2013: 368659.
10.1155/2013/368659 Google Scholar
- 23Baleanu D, Nazemi Z, Rezapour S. Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations. Adv Differ Equ. 2013; 2013: 368.
- 24Baleanu D, Nazemi Z, Rezapour S. Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations. J Inequal Appl. 2014; 2014: 31.
- 25Saoudi A, Agarwal P, Kuman P, Ghanmi A, Thounthong P. The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative. Adv Differ Equ. 2018; 2018: 263.
- 26Agarwal RP, Ahmad B. Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions.J Appl Math Comput. 2011; 62: 1200-1214.
- 27Agarwal RP, Belmekk M, Benchohra M. A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv Differ Equ. 2009; 2009: 981728.
- 28Agarwal RP, Benchohra M, Hamani S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math. 2010; 109: 973-1033.
- 29Ahmad B, Ntouyas SK. Boundary value problem for fractional differential inclusions with four-point integral boundary conditions. Surv Math Appl. 2011; 6: 175-193.
- 30Ahmad B, Ntouyas SK, Alsedi A. On fractional differential inclusions with anti-periodic type integral boundary conditions. Bound Value Probl. 2013; 2013: 82.
- 31Agarwal P, Baleanu D, Chen Y, Momani S, Machado JAT. Fractional Calculus. Amman, Jordan: ICFDA; 2018; 16-18.
- 32Agarwal P, Restrepo JE. An extension by means of -weighted classes of the generalized Riemann-Liouville -fractional integral inequalities. J Math Inequal. 2020; 14(1): 35-46.
- 33Gòrniewicz L. Topological Fixed Point Theory of Multivalued Mappings. Dordrecht: Kluwer; 1999.
10.1007/978-94-015-9195-9 Google Scholar
- 34Granas A, Dugundji J. Fixed Point Theory, Springer Monographs in Mathematics. New York, NY USA: Springer; 2003.
10.1007/978-0-387-21593-8 Google Scholar
- 35Covitz H, Nadler SB. Multivalued contraction mappings in generalized metric spaces. Isr J Math. 1970; 8: 5-11.
- 36Kamenskii M, Obukhovskii V, Zecca P. Condensing Multi-Valued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin: de Gruyter; 2001.
10.1515/9783110870893 Google Scholar
- 37Castaing C, Valadier M. Convex Analysis and Measurable Multifunctions. Berlin: Springer; 1977.
10.1007/BFb0087685 Google Scholar
- 38Deimling K. Multivalued Differential Equations. Berlin: de Gruyter; 1992.
10.1515/9783110874228 Google Scholar
- 39Zeidler E. Nonlinear Functional Analysis and Its Applications, I, Nonlinear monotone operators. New York: Springer-Verlag; 1990.