A complex analysis approach to Atangana–Baleanu fractional calculus
Corresponding Author
Arran Fernandez
Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC, via Mersin 10 Turkey
Correspondence
Arran Fernandez, Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey.
Email: [email protected] Communicated by: D. Zeidan
Search for more papers by this authorCorresponding Author
Arran Fernandez
Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC, via Mersin 10 Turkey
Correspondence
Arran Fernandez, Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey.
Email: [email protected] Communicated by: D. Zeidan
Search for more papers by this authorAbstract
The standard definition for the Atangana–Baleanu fractional derivative involves an integral transform with a Mittag-Leffler function in the kernel. We show that this integral can be rewritten as a complex contour integral which can be used to provide an analytic continuation of the definition to complex orders of differentiation. We discuss the implications and consequences of this extension, including a more natural formula for the Atangana–Baleanu fractional integral and for iterated Atangana–Baleanu fractional differintegrals.
REFERENCES
- 1Dugowson S. Les différentielles métaphysiques: Histoire et philosophie de la généralisation de l'ordre de dérivation: Université Paris Nord; 1994. PhD thesis.
- 2Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:Wiley; 1993.
- 3Samko SG, Kilbas AA, Marichev OI. Fractional Integrals Derivatives: Theory and Applications, Vol. 2002. London:Taylor & Francis; 1987. Orig. ed. in Russian Minsk; Nauka i Tekhnika.
- 4Bagley RL. Applications of generalized derivatives to viscoelasticity: Air Force Institute of Technology; 1979. PhD thesis.
- 5Herrmann R. Fractional Calculus: An Introduction for Physicists. 2nd ed. Singapore:World Scientific; 2014.
10.1142/8934 Google Scholar
- 6 R. Hilfer, ed. Applications of Fractional Calculus in Physics. Singapore:World Scientific; 2000.
10.1142/3779 Google Scholar
- 7Hristov J. Transient heat diffusion with a non-singular fading memory. Therm Sci. 2016; 20(2): 757-762. https://doi.org/10.2298/TSCI160112019H
- 8Magin RL. Fractional Calculus in Bioengineering. Connecticut:Begell House Publishers; 2006.
- 9Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity. London:Imperial College Press; 2010.
10.1142/p614 Google Scholar
- 10Tarasov VE. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Berlin:Springer; 2011.
- 11West BJ. Fractional Calculus View of Complexity: Tomorrow's Science. New Jersey:CRC Press; 2015.
- 12Oldham KB, Spanier J. The Fractional Calculus. San Diego:Academic Press; 1974.
- 13Nekrassov P. Sur la différentiation générale. Matematicheskii Sbornik. 1888; 14(1): 45-166.
- 14Osler TJ. Leibniz rule for fractional derivatives generalised and an application to infinite series. SIAM J Appl Math. 1970; 18: 658-674. https://doi.org/10.1137/0118059
- 15Fernandez A, Özarslan MA, Baleanu D. On fractional calculus with general analytic kernels. Appl Math Comput. 2019; 354: 248-265. https://doi.org/10.1016/j.amc.2019.02.045
- 16Garra R, Gorenflo R, Polito F, Tomovski Ž. Hilfer-Prabhakar derivatives and some applications. Appl Math Comput. 2014; 242: 576-589. https://doi.org/10.1016/j.amc.2014.05.129
- 17 J Hristov, ed. The Craft of Fractional Modelling in Science and Engineering. Basel:MDPI; 2018.
- 18Sousa JVdC, Oliveira ECd. On the ψ-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul. 2018; 60: 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005
- 19Tateishi AA, Ribeiro HV, Lenzi EK. The role of fractional time-derivative operators on anomalous diffusion. Front Phys. 2017; 5:52. https://doi.org/10.3389/fphy.2017.00052
- 20Ablowitz MJ, Fokas AS. Variables Complex Introduction and Applications. Cambridge:CUP; 1997.
- 21Fokas AS, Pinotsis DA. The Dbar formalism for certain linear non-homogeneous elliptic PDEs in two dimensions. Eur J Appl Math. 2006; 17: 323-346. https://doi.org/10.1017/S0956792506006607
- 22Fokas AS, van der Weele MC. Complexification and integrability in multidimensions. J Math Phys. 2018; 59: 91413. https://doi.org/10.1063/1.5032110
- 23Haubold HJ, Mathai AM, Saxena RK. Mittag-Leffler Functions and their applications. J Appl Math. 2011; 2011: Article ID 298628, 51 pages. https://doi.org/10.1155/2011/298628
10.1155/2011/298628 Google Scholar
- 24Mathai AM, Haubold HJ. Mittag-leffler functions and fractional calculus, in AM Mathai, HJ Haubold (eds.), Special Functions for Applied Scientists, Springer, New York, 2008. 79-134.
- 25Abro KA, Khan I, Tassaddiq A. Application of Atangana–Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Math Model Nat Phenom. 2018; 13(1). https://doi.org/10.1051/mmnp/2018007
- 26Bahaa GM. Generalized variational calculus in terms of multi-parameters involving Atangana–Baleanu's derivatives and application. Discrete Cont Dyn-S. 2019: 1098-1107. https://doi.org/10.3934/dcdss.2020027
- 27Bahaa GM, Atangana A. Necessary and sufficient optimality conditions for fractional problems involving Atangana–Baleanu's derivatives. Fractional Derivatives with Mittag-Leffler Kernel, Vol. 194. Cham:Springer; 2019: 13-33. https://doi.org/10.1007/978-3-030-11662-0_2
10.1007/978-3-030-11662-0_2 Google Scholar
- 28Bahaa GM, Hamiaz A. Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel. Adv Differ Equ. 2018; 2018: 257. https://doi.org/10.1186/s13662-018-1706-8
- 29Bas E, Ozarslan R. Real world applications of fractional models by Atangana–Baleanu fractional derivative. Chaos Solitons Fractals. 2018; 116: 121-125. https://doi.org/10.1016/j.chaos.2018.09.019
- 30Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm Sci. 2016; 20(2): 763-769. https://doi.org/10.2298/TSCI160111018A
- 31Abdeljawad T, Baleanu D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J Nonlinear Sci Appl. 2017; 10(3): 1098-1107. https://doi.org/10.22436/jnsa.010.03.20
- 32Baleanu D, Fernandez A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun Nonlinear Sci Numer Simul. 2018; 59: 444-462. https://doi.org/10.1016/j.cnsns.2017.12.003
- 33Djida J-D, Atangana A, Area I. Numerical computation of a fractional derivative with non-local and non-singular kernel. Math Model Nat Phenom. 2017; 12(3): 4-13. https://doi.org/10.1051/mmnp/201712302
- 34Atangana A. Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Physica A. 2018; 505: 688-706. https://doi.org/10.1016/j.physa.2018.03.056
- 35Atangana A, Gomez-Aguilar JF. Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus. 2018; 133(4). https://doi.org/10.1140/epjp/i2018-12021-3
- 36Atangana A, Gomez-Aguilar JF. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Solitons Fractals. 2018; 114: 516-535. https://doi.org/10.1016/j.chaos.2018.07.033
- 37Fernandez A, Baleanu D. On a new definition of fractional differintegrals with Mittag-Leffler kernel. Filomat. 2019; 33(1): 245-254. https://doi.org/10.2298/FIL1901245F
- 38Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015; 1(2): 73-85. https://doi.org/10.12785/pfda/010201
- 39Fernandez A, Baleanu D. The mean value theorem and Taylor's theorem for fractional derivatives with Mittag-Leffler kernel. Adv Differ Equ. 2018; 2018: 86. https://doi.org/10.1186/s13662-018-1543-9
- 40Fernandez A, Baleanu D, Srivastava HM. Series representations for models of fractional calculus involving generalised Mittag-Leffler functions. Commun Nonlinear Sci Numer Simul. 2019; 67: 517-527. https://doi.org/10.1016/j.cnsns.2018.07.035