Upper semicontinuity of global attractors for a viscoelastic equations with nonlinear density and memory effects
Corresponding Author
Yony Raúl Santaria Leuyacc
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos-SP, Brazil
Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú
Correspondence
Yony Raúl Santaria Leuyacc, Matemáticas e de Computação, Universidade de São Paulo, São Carlos-SP 13560-970, Brazil.
Email: [email protected]
Communicated by: K. Yildirim
Search for more papers by this authorJorge Luis Crisostomo Parejas
Dirección de estudios generales, Universidad San Ignacio de Loyola, Lima, Peru
Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú
Search for more papers by this authorCorresponding Author
Yony Raúl Santaria Leuyacc
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos-SP, Brazil
Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú
Correspondence
Yony Raúl Santaria Leuyacc, Matemáticas e de Computação, Universidade de São Paulo, São Carlos-SP 13560-970, Brazil.
Email: [email protected]
Communicated by: K. Yildirim
Search for more papers by this authorJorge Luis Crisostomo Parejas
Dirección de estudios generales, Universidad San Ignacio de Loyola, Lima, Peru
Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú
Search for more papers by this authorAbstract
This paper is devoted to showing the upper semicontinuity of global attractors associated with the family of nonlinear viscoelastic equations

REFERENCES
- 1Love AH. A Treatise on Mathematical Theory of Elasticity. New York: Dover; 1944.
- 2Bogolubsky IL. Some examples of inelastic soliton interaction. Comput Phys Comm. 1977; 13: 149-155.
- 3Cavalcanti MM, Domingos Cavalcanti VN, Ferreira J. Existence and uniform decay for a non-linear viscoelastic equation with strong damping. Math Methods Appl Sci. 2001; 24: 1043-1053.
- 4Conti M, Ma TF, Marchini EM, Seminario Huertas PN. Asymptotics of viscoelastic materials with nonlinear density and memory effects. J Differ Equ. 2018; 264: 4235-4259.
- 5Cavalcanti MM, Portillo Oquendo H. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim. 2003; 42: 1310-1324.
- 6Di Plinio F, Pata V, Zelik S. On the strongly damped wave equation with memory. Indiana Univ Math J. 2008; 57: 757-780.
- 7Giorgi C, Muñoz Rivera JE, Pata V. Global attractors for a semilinear hyperbolic equation in viscoelasticity. J Math Anal Appl. 2001; 260: 83-99.
- 8Messaoudi SA. General decay of solutions of a viscoelastic equation. J Math Anal Appl. 2008; 341: 1457-1467.
- 9Cavalcanti MM, Domingos Cavalcanti VN, Lasiecka I, Webler CM. Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling theb vibrations of thin rods with variable density. Adv Nonlinear Anal. 2016; 6: 121-145.
- 10Han X, Wang M. General decay of energy for a viscoelastic equation with nonlinear damping. Math Methods Appl Sci. 2009; 32: 346-358.
- 11Han X, Wang M. Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal. 2009; 70: 3090-3098.
- 12Liu W. Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Anal. 2009; 71: 2257-2267.
- 13Liu W. General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal. 2010; 73: 1890-1904.
- 14Messaoudi SA, Mustafa MI. A general stability result for a quasilinear wave equation with memory. Nonlinear Anal Real World Appl. 2013; 14: 1854-1864.
- 15Messaoudi SA, Tatar NE. Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math Methods Appl Sci. 2007; 30: 665-680.
- 16Messaoudi SA, Tatar NE. Exponential decay for a quasilinear viscoelastic equation. Math Nachr. 2009; 282: 1443-1450.
- 17Park JY, Park SH. General decay for quasilinear viscoelastic equations with nonlinear weak damping. J Math Phys. 2009; 50(8): 10.
- 18Wu ST. Arbitrary decays for a viscoelastic equation. Bound Value Probl. 2011; 2011: 1-14.
- 19Messaoudi SA, Tatar NE. Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonlinear Anal. 2008; 68: 785-793.
- 20Araujo RO, Ma TF, Qin Y. Long-time behavior of a quasilinear viscoelastic equation with past history. J Differ Equ. 2013; 254: 4066-4087.
- 21Conti M, Marchini EM, Pata V. A well posedness result for nonlinear viscoelastic equations with memory. Nonlinear Anal. 2014; 94: 206-216.
- 22Conti M, Marchini EM, Pata V. Global attractors for nonlinear viscoelastic equations with memory. Commun Pure Appl Anal. 2016; 15: 1893-1913.
- 23Qin Y, Zhang J, Sun L. Upper semicontinuity of pullback attractors for a non-autonomous viscoelastic equation. Appl Math Comput. 2013; 223: 362-376.
- 24Qin Y, Feng B, Zhang M. Uniform attractors for a non-autonomous viscoelastic equation with a past history. Nonlinear Anal. 2014; 101: 1-15.
- 25Grasselli M, Pata V. Upper semicontinuous attractor for a hyperbolic phase-field model with memory. Indiana Univ Math J. 2001; 50: 1281-1308.
- 26Hale JK, Raugel G. Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation. J Differ Equ. 1988; 73: 197-214.
- 27Pata V, Zucchi A. Attractors for a damped hyperbolic equation with linear memory. Adv Math Sci Appl. 2001; 11: 505-529.
- 28Dafermos CM. Asymptotic stability in viscoelasticity. Arch Ration Mech Anal. 1970; 37: 297-308.
- 29Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping. Mem Amer Math Soc. 2008; 195(912): 1-183.
- 30Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer; 1988.
- 31Babin AV, Vishik MI. Attractors of Evolution Equations. North-Holland, Amsterdam: Elsevier Science Pub; 1992.
- 32Hale JK. Asymptotic Behavior of Dissipative Systems. Providence, R.I.: American Mathematical Society; 1988.
- 33Miranville A, Zelik S. Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains. In: CM Dafermos, M Pokorny, eds. Handbook of Differential Equations, Evolutionary Equations, Chapter 3, vol. 4. Amsterdam: Elsevier; 2008: 103-200.
10.1016/S1874-5717(08)00003-0 Google Scholar
- 34Seminario Huertas PN. Atratores globais para uma equação viscoelástica não linear com história. Dissertação (Mestrado em Matemática). São Carlos: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo; 2015.
- 35Haraux A. Systèmes Dynamiques Dissipatifs Et Applications. Paris: Masson; 1991.