The singular kernel coagulation equation with multifragmentation
Corresponding Author
Carlos Cueto Camejo
Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
Correspondence to: Carlos Cueto Camejo, Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
E-mail: [email protected]
Search for more papers by this authorGerald Warnecke
Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
Search for more papers by this authorCorresponding Author
Carlos Cueto Camejo
Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
Correspondence to: Carlos Cueto Camejo, Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
E-mail: [email protected]
Search for more papers by this authorGerald Warnecke
Institute for Analysis and Numerics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
Search for more papers by this authorAbstract
In this article, we prove the existence of solutions to singular coagulation equations with multifragmentation. We use weighted L1 spaces to deal with the singularities and to obtain regular solutions. The Smoluchowski kernel is covered by our proof. The weak L1 compactness methods are applied to suitably chosen approximating equations as a base of our proof. A more restrictive uniqueness result is also given. Copyright © 2014 John Wiley & Sons, Ltd.
References
- 1Ziff RM. Kinetics of polymerization. Journal of Statistical Physics 1980; 23: 241–263.
- 2Pruppacher HR, Klett JD. Microphysics of Clouds and Precipitation. Kluwer Academic Publishers: Dordrecht, 2007.
- 3Laurençot P. On a class of continuous coagulation-fragmentation equations. Journal of Differential Equations 2000; 167: 245–274.
- 4McLaughlin DJ, Lamb W, McBride AC. An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM Journal on Mathematical Analysis 1997; 28(5): 1173–1190.
- 5Melzak ZA. A scalar transport equation. Transactions of the American Mathematical Society 1957; 85: 547–560.
- 6Walker C. Coalescence and breakage processes. Mathematical Methods in the Applied Sciences 2002; 25: 729–748.
- 7Banasiak J, Lamb W. Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation. Proceedings of the Royal Society of Edinburgh 2011; 141A: 465–480.
10.1017/S0308210509001255 Google Scholar
- 8Banasiak J, Lamb W. Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates. Journal of Mathematical Analysis and Applications 2012; 391: 312–322.
- 9Giri AK, Kumar J, Warnecke G. The continuous coagulation equation with multiple fragmentation. Journal of Mathematical Analysis and Applications 2011; 374: 71–87.
- 10Giri AK, Laurençot P, Warnecke G. Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Analysis 2012; 75: 2199–2208.
- 11Stewart IW. A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels. Mathematical Methods in the Applied Sciences 1989; 11: 627–648.
- 12Cañizo Ricón JA. Some problems related to the study of interaction kernels: coagulation, fragmentation and difussion in kinetic and quantum equations, PhD thesis, Universidad de Granada, 2006.
- 13von Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift Für Physikalische Chemie 1917; XCII: 129–168.
- 14Einstein A. Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 1905; 17: 549–560.
- 15Einstein A. Zur Theorie der Brownschen Bewegung. Annalen der Physik 1905; 19: 371–381.
- 16Hounslow MJ. The population balance as a tool for understanding particle rate processes. KONA Powder and Particle Journal 1998; 16: 179–193.
- 17Cueto Camejo C, Gröpler R, Warnecke G. Existence and uniqueness of solutions to the coagulation equations with singular kernels. Manuscript Mathematical Methods in the Applied Science 2014, DOI: 10.1002/mma3211.
10.1002/mma3211 Google Scholar
- 18McGuinness GC, Lamb W, McBride AC. On a class of continuous fragmentation equations with singular inital conditions. Mathematical Methods in the Applied Sciences 2011; 34: 1181–1192.
- 19Lamb W, McBride AC, McGuinness GC. Fragmentation arising from a distributional initial condition. Mathematical Methods in the Applied Sciences 2010; 33: 1183–1191.
- 20McGrady ED, Ziff RM. ‘Shattering’ transition in fragmentation. Physical Review Letters 1987; 58: 892–895.
- 21Ziff RM, McGrady ED. The kinetics of cluster fragmentation and depolymerisation. Journal of Physics A: Mathematical and General 1985; 18: 3027–3037.
- 22Ziff RM, McGrady ED. Kinetics of polymer degradation. Macromolecules 1986; 19: 2513–2519.
- 23Giri AK. Mathematical and numerical analysis for coagulation-fragmentation equations, Doctoral thesis, Otto von Guericke University of Magdeburg, Germany, 2010.
- 24Stewart IW. A uniqueness theorem for the coagulation-fragmentation equation. Mathematical Proceedings of the Cambridge Philosophical Society 1990; 107: 573–578.
- 25Walter W. Analysis 1. Springer-Verlag: Berlin Heidelberg, 2004.
- 26Edwards RE. Functional Analysis, Theory and Applications. Holt, Rinehart and Wiston Inc.: New York, 1965.
- 27Ash RB. Measure, Integration and Functional Analysis. Academic Press: New York, 1972.
- 28Cueto Camejo C. The singular coagulation and coagulation-fragmentation equations, Doctoral thesis, Otto von Guericke University of Magdeburg, Germany, 2013.